

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

AMA 2279: LINEAR BOOLEAN ALGEBRA

END OF SEMESTER EXAMINATION **SERIES: DECEMBER 2014** TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables _
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

a)	$\vec{v} = (v_1, v_2, v_3) \qquad \vec{w} = (w_1, w_2, w_3) \qquad \vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$ Given that and show that	(4 marks)
b)	Find the equation of the plane P containing the points (2, 1, 3), (1, -1, 2) and (3, 2, 1) $\sim (p \land q) \sim (p \leftrightarrow q)$	(5 marks)
c)	Construct the truth tables for and	(4 marks)
d)	Define the term Augmented matrix	(2 marks)
e)	Convert (98.1) ₁₀ to binary. (4 ma	rks)

$$\begin{vmatrix} 7 & 2 & 3 \\ 4 & 1 & 5 \\ 2 & 0 & 3 \end{vmatrix}$$

f) Evaluate (3 marks)
 $\vec{u} \times (\vec{v} \times \vec{w})$ $\vec{u} = (1,2,4), \ \vec{v} = (2,2,0)$ $\vec{w} = (1,3,0)$
g) Find for and (4 marks)

 $\vec{u} = (2,1,3)$ $\vec{v} = (-1,3,2)$ $\vec{w} = (1,1,-2)$ **h)** Find the volume of a parallel piped with adjacent sides

(4 marks)

and

Question Two

a) Apply the Gaus Jordan Method to solve the following system of equations:

$2x_1 + 2x_2 + 6x_3 = 4$	
$2x_1 + x_2 + 7x_3 = 6$	
$-2x_1 - 6x_2 - 7x_3 = -1$	
	(10 marks)
$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	
$B = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 5 & 8 & 9 \end{pmatrix}$	
$\left(5 8 9\right)$	
b) Given find:	
(i) det (B)	(2 marks)
(ii) Adj (B)	(6 marks)
(iii) B-1 using Adj (B)	(2
marks)	

Question Three

 $\cos\theta \frac{\vec{r} \cdot \vec{w}}{\left\| \vec{r} \right\| \cdot \left\| \vec{w} \right\|}$ $\overrightarrow{v} = (v_1, v_2, v_3)$

is the angle between the two vectors a) (i) Show that where and $\overrightarrow{w} = (w_1, w_2, w_3)$ (5 marks)

$$\vec{v} = (2,1,-1)$$
 (3,4,1)

- (ii) Find the angle between the vectors (3 marks) and
- b) (i) Find the distance d from (2, 4, -5) to the plane 5x 3y + x 10 = 0

$$5x - 3y + z - 1 = 0$$
 $2x + 4y - z + 3 = 0$
and

(ii) Find the line of intersection L of the planes

(5 marks)

(3 marks)

c)	Determine the truth of the following statements:
	(i) Mombaca in Konva and $2 \pm 4 = 7$

(1)	Mombasa	ın	Ken	ya ar	ld	2 +	4 =	= ,	/
···>	.	1	. •	C	2		_	• .	0

(ii) x = 2 is a solution of $x^2 = 4$ or 5 < 8

Question Four

		-			
A =	2	-1 1	3		
	4	1	8		
a) Find the inverse of the matrix				by Row reduction	(8 marks)
b) Define the following terms:					
(i) Non-homogeneous system					(2 marks)
(ii) Homogenous system					(2 marks)
c) Find the solution of the following system of equation:					
$x_1 + 2x_2 + 2x_3 + 3x_4 = 0$					
$2x_1 + 4x_2 + x_3 + 3x_4 = 0$					

$$3x_1 + 6x_2 + x_3 + 4x_4 = 0$$

 $(1 \ 0 \ 2)$

Question Five

a) Find the Eigen values associated with the matrix

$$A = \begin{pmatrix} 0 & 6 & 3 \\ -1 & 5 & 1 \\ -1 & 2 & 4 \end{pmatrix}$$

 $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$

b) Find the truth table of

 $\begin{pmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$

c) Find the cofactor matrix of

(8 marks)

(2 marks)

(8 marks)

(6 marks)

(6 marks)