TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

AMA 2279: LINEAR BOOLEAN ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \quad \vec{w}=\left(w_{1}, w_{2}, w_{3}\right) \quad \vec{v} \times \vec{w}=-\vec{w} \times \vec{v}
$$

a) Given that and show that (4 marks)
b) Find the equation of the plane P containing the points $(2,1,3),(1,-1,2)$ and $(3,2,1)$
(5 marks)

$$
\sim(p \wedge q) \quad \sim(p \leftrightarrow q)
$$

c) Construct the truth tables for and
d) Define the term Augmented matrix
e) Convert (98.1) ${ }_{10}$ to binary.

$$
\left|\begin{array}{lll}
7 & 2 & 3 \\
4 & 1 & 5 \\
2 & 0 & 3
\end{array}\right|
$$

f) Evaluate

$$
\vec{u}=(2,1,3) \quad \vec{v}=(-1,3,2) \quad \vec{w}=(1,1,-2)
$$

h) Find the volume of a parallel piped with adjacent sides

Question Two

a) Apply the Gaus Jordan Method to solve the following system of equations:

$$
\begin{aligned}
& 2 x_{1}+2 x_{2}+6 x_{3}=4 \\
& 2 x_{1}+x_{2}+7 x_{3}=6 \\
& -2 x_{1}-6 x_{2}-7 x_{3}=-1
\end{aligned}
$$

b) Given

$$
B=\left(\begin{array}{lll}
1 & 1 & 1 \tag{10marks}\\
2 & 3 & 4 \\
5 & 8 & 9
\end{array}\right)
$$

(i) $\operatorname{det}(\mathrm{B})$
(ii) Adj (B)
(iii) B-1 using Adj (B) find:
(2 marks)
(6 marks)

Question Three

$\cos \theta \frac{\vec{r} \cdot \vec{w}}{\|\vec{r}\| \cdot\|\vec{w}\|} \quad \theta \quad \vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$
a) (i) Show that where is the angle between the two vectors and $\vec{w}=\left(w_{1}, w_{2}, w_{3}\right)$
(5 marks)

$$
\vec{v}=(2,1,-1) \quad(3,4,1)
$$

b) (i) Find the distance d from $(2,4,-5)$ to the plane $5 x-3 y+x-10=0$

$$
\begin{gathered}
5 x-3 y+z-1=0 \quad 2 x+4 y-z+3=0 \\
\text { and }
\end{gathered}
$$

c) Determine the truth of the following statements:
(i) Mombasa in Kenya and $2+4=7$
(ii) $x=2$ is a solution of $x^{2}=4$ or $5<8$

Question Four

$$
A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)
$$

a) Find the inverse of the matrix by Row reduction
b) Define the following terms:
(i) Non-homogeneous system
(ii) Homogenous system
c) Find the solution of the following system of equation:

$$
\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3}+3 x_{4}=0 \\
& 2 x_{1}+4 x_{2}+x_{3}+3 x_{4}=0 \\
& 3 x_{1}+6 x_{2}+x_{3}+4 x_{4}=0
\end{aligned}
$$

Question Five

a) Find the Eigen values associated with the matrix

$$
A=\left(\begin{array}{ccc}
0 & 6 & 3 \\
-1 & 5 & 1 \\
-1 & 2 & 4
\end{array}\right)
$$

$$
(p \rightarrow q) \wedge(q \rightarrow r) \rightarrow(p \rightarrow r)
$$

b) Find the truth table of

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

c) Find the cofactor matrix of

