TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE BACHELOR OF MATHEMATICS \& COMPUTER SCIENCE (BMCS/BSSC)

AMA 4217: LINEAR ALGEBRA I
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
\mathfrak{R}^{3}
a) Consider point $\mathrm{P}(3, \mathrm{~K},-2)$ and $\mathrm{Q}(5,3,4)$ in . Find K so that P Q is orthogonal to the vector $\mathrm{U}=(4$, $-3,2$)
(4 marks)
b) Each of the following equations determines a plane in $\Re^{\Re^{3}}$. Do the two planes intersect? If so describe their intersection:

$$
\begin{aligned}
& x_{1}+4 x_{2}-5 x_{3}=0 \\
& 2 x_{1}-x_{2}+8 x_{3}=9
\end{aligned}
$$

c) Is the set $\{(1,0,-1),(0,1,-1),(-1,1,0)\}$ a spanning set for \quad Justify your answer (4 marks)
d) Reduce the following matrix to reduced echelon form:

$$
\left(\begin{array}{ccccccc}
1 & 3 & -2 & 0 & 2 & 0 & 0 \\
2 & 6 & -5 & -2 & 4 & -3 & -1 \\
0 & 0 & 5 & 10 & 0 & 15 & 5 \\
2 & 6 & 0 & 8 & 4 & 18 & 6
\end{array}\right)
$$

(4 marks)

$$
\begin{array}{lll}
\lambda & \vec{a}=3 i-2 \lambda j+2 k & \vec{b}=2 \lambda i+\lambda j+4 k
\end{array}
$$

e) Find the values of so that

$$
\mathfrak{R}^{4}
$$

f) A subset U of is spanned by the set comprising of the vectors:
$(1,2,0,4),(2,1,-1,3),(0,3,1,5),(2,4,0,8)$
(i) Find a basis for U
(3marks)
\mathfrak{R}^{4}
(ii) Extend the vectors in (i) above to a basis for

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \mathfrak{R}^{2} \rightarrow \mathfrak{R}^{2}
$$

g) Let be the matrix map A: give a geometric description of the transformation
(3 marks)

$$
U=\left\{(x, y, z) \in \mathfrak{R}^{3}|2 x+3 y-z=0|\right\}
$$

h) Show that the subset is a subspace of . What does it represent geometrically.

Question Two

$$
T\left(x_{1}, x_{2}\right)=\left(3 x_{1}+x_{2}, 5 x_{1}+7 x_{2}, x_{1}+3 x_{2}\right)
$$

a) Let
b) Let $\mathrm{U}=(1,-3,2)$ and $\mathrm{V}=2,-1,1)$ be vectors in
(i) Write $\mathrm{W}=(1,7,4)$ as a linear combination of U and V
(4 marks)
(ii) Extend vectors (U, V) to form a basis for
c) Let
(i) Define the rank of a matrix
(ii) Find the rank of matrix B
d) Let V be the vector space of 2×2 matrices over . Determine whether the matrices A, B $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad C=\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)$ are linearly independent

Question Three

$$
A=\left(\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right), U=\binom{2}{-1}, b=\left(\begin{array}{c}
3 \\
2 \\
-5
\end{array}\right), C=\left(\begin{array}{l}
3 \\
2 \\
5
\end{array}\right)
$$

Set
and define the transformation by

$$
T(x)=A x \text { so that } \quad T(x)=A x=\left(\begin{array}{cc}
1 & -3 \\
3 & 5 \\
-1 & 7
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
x_{1} & -3 x_{2} \\
3 x_{1} & +5 x_{2} \\
-x & +7 x_{2}
\end{array}\right)
$$

a) Find $T(U)$ the image of U under the transformation T
b) Find x in whose image under T is b
c) Is there more than one x whose image under T is b ?
d) Determine if C is in the range of the transformation T

Question Four

$$
H=\operatorname{span}\left\{v_{1}, v_{2}\right.
$$

a) Given that V_{1} and V_{2} are in the vector space V and let \} Show that H is a subspace of V.

$$
\vec{a}=(4,-3,1) \quad \vec{b}=(2,3-1)
$$

b) Find a unit vector perpendicular to
and
c) Determine the dimension of the subspace H of \mathfrak{R}^{3} spanned by the vectors V_{1}, V_{2}, and V_{3}

$$
V_{1}=\left(\begin{array}{c}
2 \\
-8 \\
6
\end{array}\right) \quad V_{2}=\left(\begin{array}{c}
3 \\
-7 \\
-1
\end{array}\right) \quad V_{3}=\left(\begin{array}{c}
-1 \\
6 \\
-7
\end{array}\right)
$$

(4 marks)
d) Show that w is not a subspace of V where w consists of all matrices A for which $\mathrm{A}^{2}=\mathrm{A}$

Question Five

$$
V_{1}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), V_{2}=\left(\begin{array}{c}
5 \\
-4 \\
7
\end{array}\right), V_{3}=\left(\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right) \quad\left(\begin{array}{c}
-4 \\
3 \\
n
\end{array}\right)
$$

a) Given that and $\left.\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$
for what values of n will y be in the span $\left\{\mathrm{v}_{1}\right.$, (5 marks)
b) Find the angle between the vectors:

$$
\begin{aligned}
& \overrightarrow{0 A}=4 i-5 j+2 k \\
& \overrightarrow{0 B}=-i+2 j+3 k
\end{aligned}
$$

To the nearest degree

$$
\left\{a_{0}+a_{1} x+a_{2} x^{2} \mid a_{0}+2 a_{1}+a_{2}=1\right\}
$$

c) Is the subset P
a subspace of polynomials

$$
U \times(2 U+V)+2 V \times(3 V-U)
$$

d) Given that $U \times V=i+3 j$ Find

