

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF TECHNOLOGY IN APPLIED PHYSICS BACHELOR OF TECHNOLOGY IN RENEWABLE ENERGIES (BTAP/BTRE)

AMA 4216: LINEAR ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define what is meant by:
(i) Diagonal matrix
(ii) An upper triangular matrix
b) For what values of x, y and z is the matrix:

$$
A=\left(\begin{array}{lll}
x & y & z \\
2 & 0 & 3 \\
4 & 3 & 3
\end{array}\right)
$$

> is symmetric

$$
\underset{\sim}{a}=6 \underset{\sim}{i}+8 \underset{\sim}{j}-4 \underset{\sim}{k} \quad \underset{\sim}{b}=m \underset{\sim}{i}+5 \underset{\sim}{j}-3 \underset{\sim}{k}
$$

c) Determine the value of M so that
and are orthogonal.
(2 marks)
d) Find the value of x if the given matrix A is singular:

$$
A=\left(\begin{array}{ccc}
2 & 2 x & 2 x^{2} \\
2 & 2 & 2 \\
1 & -6 & 18
\end{array}\right)
$$

(3 marks)
e) Find the equation of the plane through the point $(-2,4,6)$ and perpendicular to the plane $4 x-6 y+8 z=2 \quad 6 x-10 y+4 z=6$ and

$$
A=\left(\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right)
$$

f) Let find all Eigen values of A and the corresponding Eigen vector.
g) Solve using Cramer's rule

$$
\begin{aligned}
& x+y-z=1 \\
& x-y+2 z=3 \\
& 2 x-y+z=5
\end{aligned}
$$

h) For which value of m will the vector $u=(1,-2, m) \mathfrak{R}^{3}$ in be a linear combination of $v=(3,0,-2)$ and $w=(2,-1,-5)$

$$
u=(1,-2, m) \quad \Re^{3} \quad v=(3,0,-2)
$$

Question Two

$$
A=\left(\begin{array}{ccc}
-1 & 2 & -3 \\
2 & 1 & 0 \\
4 & -2 & 5
\end{array}\right)
$$

a) Find the inverse of the matrix

$$
\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
3 & 8 & 7 & 20 \\
2 & 7 & 9 & 23
\end{array}\right)
$$

b) Find the row reduced echelon form of the matrix:
c) Solve by determinants

$$
\begin{align*}
& -4 y+x=6-z \\
& 4 x+2 z=-1+y \\
& -3 z+20=-2 x-2 y \tag{6marks}
\end{align*}
$$

$$
(k+1) x-y+(2-k) z=0
$$

d) Find the value of K so that the plane
is perpendicular to the plane $2 x+6 y-z+3=0$
(3 marks)

Question Three

a) Find the dimension and a basis of the solution space w of the system:

$$
\begin{aligned}
& x+2 y+2 z-s+3 s=0 \\
& x+2 y+3 z+s+t=0 \\
& 3 x+6 y+8 z+s+5 t=0
\end{aligned}
$$

(8 marks)
b) Find all Eigen values and basis for each Eigen space:

$$
A=\left(\begin{array}{lll}
1 & -3 & 3 \\
3 & -5 & 3 \\
6 & -6 & 4
\end{array}\right)
$$

$$
\begin{equation*}
x+2 y-2 z=0 \quad 3 x-5 y+4 z=0 \tag{9marks}
\end{equation*}
$$

c) Obtain the acute angle between the two planes and

Question Four

a) Find the area of a triangle with vertices at (4, $-3,1$), ($3,-1,2$) and ($1,-1,-3$) using vector approach.
(4 marks)

$$
\underset{\sim}{A}=2 \underset{\sim}{i}+\underset{\sim}{j}-\underset{\sim}{k} \quad \underset{\sim}{B}=\underset{\sim}{i}-\underset{\sim}{j}+2 \underset{\sim}{k}
$$

b) Find the unit vector perpendicular to the vectors and
c) Solve by use of inverse matrix method:

$$
\begin{align*}
& x_{1}+3 x_{2}+2 x_{3}=3 \\
& 2 x_{1}+4 x_{2}+2 x_{3}=8 \\
& x_{1}+2 x_{2}-x_{3}=10 \tag{6marks}
\end{align*}
$$

$$
2 x-3 y+6 z+7=0
$$

d) Obtain the distance from the point $(2,-3,-1)$ to the plane
e) Find the equation of the plane through the point $(4,3,6)$ and perpendicular to the line joining that point to the point $(2,3,1)$

Question Five

$v=t^{2}+4 t-3$
$e_{1}=t^{2}-2 t+5 \quad e^{2}=2 t^{2}-3 t, e^{3}=t+3$
a) Write $v=t^{2}+4 t-3$ as a linear combination of
(8 marks)
b) Find the equations of the plane passing through the point $(-1,2,4)$ and containing the line of $5 x-y+z=1 \quad x-6 y+z=2$
intersection of planes and (7 marks)
c) Find the dimension and a basis for one vector space spanned by $(1,4,3),(2,-2,6)$ and $91,-6,3)$
(5 marks)

