

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR:
 DEGREE IN BACHELOR OF SCIENCE MATHEMATICS
 (BSMA)

SMA 2379: LINEAR BOOLEAN ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: AUGUST 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
A=\left(\begin{array}{cc}
2 & 3 \\
1 & -4
\end{array}\right) \quad B=\left(\begin{array}{ll}
-5 & 7 \\
-3 & 4
\end{array}\right)
$$

a) If

$$
\begin{aligned}
& 3 x+5 y-7=0 \\
& 4 x-3 y-19=0
\end{aligned}
$$

b) Use matrices to solve the simultaneous equations
e) Construct the truth table for $\sim p \vee q$
f) Find the equation of the plane passing through the three points (2, 3, 4), ($-3,5,1$), (4, $-1,2$)
(6 marks)

$$
A=\left(\begin{array}{lll}
3 & 4 & 5 \\
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
$$

g) Determine the rank of

$$
A \cdot B \cdot \bar{C}+A \cdot B \cdot C+\bar{A} \cdot B \cdot C
$$

h) Simplify
(4 marks)

Question Two

$$
A=\left(\begin{array}{ccc}
1 & -6 & -4 \\
0 & 4 & 2 \\
0 & -6 & -3
\end{array}\right)
$$

a) Find the Eigen values and Eigen vectors of the matrix
(12 marks)

$$
\underset{\sim}{A}=A_{1} \hat{i}+A_{2} \hat{j}+A_{3} \hat{k} \quad \underset{\sim}{B}=B_{1} \hat{j}+B_{2} \hat{j}+B_{3} \hat{k} \quad \underset{\sim}{A} \bullet \underset{\sim}{B}=A_{1} B_{1}+A_{2} B_{2}+A_{3} B_{3}
$$

b) If and prove that
(4 marks)

$$
\underset{\sim}{A}=\hat{i}+\hat{j}, \quad \underset{\sim}{B}=2 \hat{i}-3 \hat{j}+\hat{k}, \quad \underset{\sim}{C}=4 \hat{j}-3 \hat{k} \quad|\underset{\sim}{A} \times \underset{\sim}{B}| \times \underset{\sim}{C}
$$

c) If , find

Question Three

b) Find the equation to the plane through $\mathrm{P}(2,6,3)$ at right angle to OP, O being the origin.
(5 marks)

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 7 \\
3 & 1 & 2
\end{array}\right)
$$

c) Reduce the following matrix to upper triangular form:
(3 marks)

$$
\left(\begin{array}{cc}
x+3 & 2 y+x \\
z-1 & 4 a-6
\end{array}\right)=\left(\begin{array}{cc}
0 & -7 \\
3 & 2 a
\end{array}\right)
$$

d) Find the value of x, y, z and a which satisfy the matrix equation
(4 marks)

Question Four

0.1011_{2}
a) Convert (i) to a decimal fraction
(4 marks)
$C 9_{16}$
(ii) The hexadecimal number into decimal
(3 marks)

$$
\overline{(A+B)}=\bar{A} \cdot \bar{B}
$$

b) Verify that using a truth table.
c) A force of 4 N is inclined at an angle of 45° to a second force of 7 N , both force acting at a point. Calculate the resultant force of the two forces.

Question Five

$$
\bar{P} \cdot \bar{Q}+\bar{P} \cdot Q+P \cdot \bar{Q}
$$

a) Simplify the Boolean express:
b) Solve the following simultaneous equation using Creamers rule:

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x-3 y+4 z=33 \\
& 3 x-2 y-2 z=2
\end{aligned}
$$

$$
\begin{equation*}
\underset{\sim}{a}=4 \hat{i}+\hat{j}+\hat{k}, \underset{\sim}{b}=2 \hat{i}+\hat{j}+2 \hat{k} \quad \underset{\sim}{c}=3 \hat{i}+4 \hat{j}+5 \hat{k} \quad|\underset{\sim}{a}+\underset{\sim}{b}| \cdot|\underset{\sim}{b}+\underset{\sim}{c}| \tag{10marks}
\end{equation*}
$$

c) If and . Find (6 marks)
d) Define a vector.

