TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MARINE RESOURCE MANAGEMENT

SMA 2279: LINEAR \& BOOLEAN ALGEBRA
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)
$A B^{-1}=B^{-1} A^{-1}$
a) Show that
b) Find the area of a parallelogram with vertices at $(1,1,1)(2,3,2)(-2,4,4)$ and $(-3,2,3)$
(5 marks)

$$
L_{1}: \overrightarrow{r_{1}}=(4,1,2)+t(1,2,-1) \quad L_{2}: \vec{r}_{2}=(-1,5,-1)+t 3(-1,1)
$$

c) Show that the lines and are perpendicular
(3 marks)
d) Determine the unknown quantities in the following expression:

$$
2\left(\begin{array}{cc}
x+2 & y+3 \\
3 & 0
\end{array}\right)=\left(\begin{array}{ll}
3 & 6 \\
y & z
\end{array}\right)^{T}
$$

$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-1 & 2
\end{array}\right)
$$

e) Find the characteristic polynomial of the matrix
and hence show that A satisfies its own characteristic equation
f) Convert (58.32) to binary
(4 marks)
g) Construct the truth tables of $\sim(p \wedge q) \sim p \vee \sim q$
Question Two
a) Resolution of forces and balancing of moments leads to the following equation for three forces F1, F2, F3 (Newtons) acting on one of the struts in an aircraft wing;

$$
\begin{aligned}
& F_{1}-F_{2}=0 \\
& 2 F_{1}+F_{2}-2 F_{3}=20 \\
& F_{2}-F_{3}=4
\end{aligned}
$$

Find the forces by Crammer's rule
b) Find all the eigen values and eigen vectors of the followign matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

$$
\vec{a}, \vec{b}, \vec{c}
$$

$$
\mathfrak{R}^{3}
$$

c) Show that for any vectors in we have

$$
\begin{equation*}
\vec{a} \times(\vec{b} \times \vec{c})+\vec{b}(c \times a)+c \times(a \times b)=0 \tag{5marks}
\end{equation*}
$$

Question Three

a) Reduce the following matrix to echelon form and state the rank of the matrix.

$$
A=\left(\begin{array}{llll}
1 & 2 & -3 & 0 \\
2 & 4 & -2 & 2 \\
3 & 6 & -4 & 3
\end{array}\right)
$$

as its general solution
b) Apply the Gauss-Jordan method to solve the following system of equations

$$
\begin{aligned}
& 4 y+z=2 \\
& 2 x+6 y-2 z=3 \\
& 4 x+8 y-5 z=4
\end{aligned}
$$

Question Four

a) Find the determinant of the following matrix

$$
A=\left(\begin{array}{ccccc}
1 & -2 & 3 & 1 & 2 \\
1 & 1 & 4 & -1 & 3 \\
2 & 5 & 9 & -2 & 8
\end{array}\right)
$$

b) Reduce
to row canonical form
(8 marks)
c) Define the following terms:
(i) Proposition
(ii) Tautology
(iii) Contradition

Question Five

a) Solve the following homogeneous system of equations:

$$
\begin{array}{ll}
x_{1}+2 x_{2} & x_{4}=0 \\
-2 x_{1}-3 x_{2} & +4 x+5 x_{4}=0 \\
2 x_{1}+4 x_{2} & -2 x_{4}=0
\end{array}
$$

b) Attempt to solve the following system using Gaussian elimination and explain what occur to indicate that the system is impossible to solve:

$$
\begin{aligned}
& -x_{1}+3 x_{2}-2 x_{3}=1 \\
& -x_{1}+4 x_{2}-3 x_{3}=0 \\
& -x_{1}+5 x_{2}-4 x_{3}=0
\end{aligned}
$$

$$
(p \rightarrow q)(q \rightarrow r)(p \rightarrow r)
$$

c) Find the truth table for the statement

