

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR THE **BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING**

SMA 2279: LINEAR & BOOLEAN ALGEBRA

SPECIAL/SUPPLEMANTARY EXAMINATION SERIES: OCTOBER 2013 TIME: 2 HOURS

Instructions to Candidates: You should have the following for this examination Answer Booklet This paper consist of **FIVE** questions in **TWO** Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (Compulsory)

- **a)** Define the following terms:
 - (i) Orthogonal vectors (1 marks) (ii) A diagonal matrix (1 marks) A compound proposition (iii) (1 marks)
- b) Use your knowledge of the truth tables to determine the truth values of the following compound statements. (3 marks)

2
$$+3 = 5$$
 and $1 + 1 = 3$

at

c) Find the unit vectors that are tangent and normal to the following curve at the stated point. $3x^{2} + 8xy + 2y^{2} - 3 = 0$

(1, 0)	(5 marks)
--------	-----------

	$a = 4i + 3k \qquad b = -2i + j5k$	
d)	If and find: $a+b$	
	(i) $\begin{vmatrix} 2a + 3b \\ 2a + 3b \end{vmatrix}$	(2 marks)
	(ii)	(3 marks)
e)	$A = \begin{bmatrix} 2 & 3 & 5 \\ 1 & 0 & 4 \\ 6 & 1 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 7 & 9 & 8 \\ 2 & 3 & 6 \\ 1 & 5 & 0 \end{bmatrix}$ If and Evaluate:	
	(i)	(2 marks)
	<i>AB</i> (ii)	(3 marks)
f)	$\sim p \wedge q$ Construct a truth table for the statement $\begin{bmatrix} 2 & -3 \\ 4 & 2 \end{bmatrix}$	(4 marks)
g)) Find the inverse of the matrix hence solve the simultaneous equation: $2x - 3y = -4$	
	4x + 2y = 8	<i>(</i> - - - - - - - - - -
		(5 marks)
Qu	lestion Two	
a)	Find an equation for the plane through the points $A(0,0,1) B(2,0,0)$ and $C(0,3,0)$	(6 marks)
b)	A = 2i + j - k $B = i - j + 2kFind a unit vector perpendicular to both and$	(4 marks)
c)	Find the area of the triangle whose vertices are $A(1,-1,0) B(2,1,-1) \qquad C(-1,1,2)$ and	(5 marks)
d)	x = 1+t, $y = 3-t$; $2 = 2tFind the distance from the point S(1, 1, 5) to the line L;$	(5 marks)
Qu	lestion Three	

a) Define the following terms:

©	2013 -	- Technical University of Mombasa	Page 3
a)	Define	e the terms Eigen value and Eigen vector	(2 marks)
Qu	lestion	Five	
	Find t	he total profits for F1 and F2	(2 marks)
d)	Two fa a profi	actory outlets F1 and F2 in New York and Los Angeles sell sofas (s), chain it of 110, 45 and 80 respectively. The sales in a certain week were given b $S C T$ $A = \begin{bmatrix} 600 & 400 & 100 \\ 300 & 820 & 205 \end{bmatrix} F1$ $F2$	rs \mathbb{C} and tables. T with by the matrix.
		2x + y + z = 5 $3x + y - 2z = 1$	(7 marks)
c)	Use C	ramer's rule to solve. x + 2y + 3z = 6	
b)	A= If	$\begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$ find the inverse of A	(6 marks)
a)	Define (i) (ii) (iii)	e the following terms: Null matrix Triangular matrix Principal minors	(1 mark) (2 marks) (2 marks)
Qu	iestion	Four	
e)	Detern	nine the values of x that make the following statements to be true. 4+3=5 if and only if $x + 3 = 9$	(3 marks)
d)	Show	that the conditional statement $[(p \land q) \land p] \rightarrow q$ is a tautology	(4 marks)
c)	Constr	$p \rightarrow (q \wedge \sim r)$ ruct a truth table for the statement	(5 marks)
b)	Show	that $A - B = A \cap B'$ where A and B are subjects of the universal μ	(5 marks)
	(i) (ii)	Logic Tautology	(1 mark) (1 mark)

$$A = \begin{bmatrix} -5 & 2 \\ 2 & -2 \end{bmatrix}$$

b) If calculate:
(i) Eigen values of A
(ii) Eigen vectors of A
(iii) Eigen vectors of A
(i

e) Show that the conditional and contra positive statements are equivalent and that the converse and inverse statement are equivalent. (5 marks)