

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 UNIVERSITY EXAMINATION FOR THE BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING

SMA 2279: LINEAR \& BOOLEAN ALGEBRA

SPECIAL/SUPPLEMANTARY EXAMINATION

SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions in TWO
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Orthogonal vectors
(1 marks)
(ii) A diagonal matrix
(1 marks)
(iii) A compound proposition
b) Use your knowledge of the truth tables to determine the truth values of the following compound statements.

$$
\begin{equation*}
2+3=5 \text { and } 1+1=3 \tag{3marks}
\end{equation*}
$$

c) Find the unit vectors that are tangent and normal to the following curve at the stated point.

$$
3 x^{2}+8 x y+2 y^{2}-3=0
$$

$$
\underset{\sim}{a}=4 \underset{\sim}{i}+3 \underset{\sim}{k} \quad \underset{\sim}{b}=-2 \underset{\sim}{i}+j 5 k
$$

d) If and find: $\underset{\sim}{a}+\underset{\sim}{b}$
(i)

$$
|2 \underset{\sim}{a}+3 \underset{\sim}{b}|
$$

(ii)

$$
A=\left[\begin{array}{lll}
2 & 3 & 5 \\
1 & 0 & 4 \\
6 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
7 & 9 & 8 \\
2 & 3 & 6 \\
1 & 5 & 0
\end{array}\right]
$$

e) If and
Evaluate:

$$
A+B
$$

(i)

$$
A B
$$

(ii)
$\sim p \wedge q$
f) Construct a truth table for the statement
g) Find the inverse of the matrix hence solve the simultaneous equation:

$$
\begin{aligned}
& 2 x-3 y=-4 \\
& 4 x+2 y=8
\end{aligned}
$$

Question Two

a) Find an equation for the plane through the points $\mathrm{A}(0,0,1) \mathrm{B}(2,0,0)$ and $\mathrm{C}(0,3,0)$

$$
A=2 i+j-k \quad B=i-j+2 k
$$

b) Find a unit vector perpendicular to both and

$$
A(1,-1,0) \quad B(2,1,-1) \quad C(-1,1,2)
$$

c) Find the area of the triangle whose vertices are
and

$$
x=1+t, y=3-t ; 2=2 t
$$

d) Find the distance from the point $S(1,1,5)$ to the line L;

Question Three

a) Define the following terms:
$\begin{array}{lll}\text { (i) } & \text { Logic } & \text { (1 mark) } \\ \text { (ii) } & \text { Tautology } & \mathbf{(1 ~ m a r k)}\end{array}$
$A \cap B^{\prime} \quad \mu$
b) Show that $\mathrm{A}-\mathrm{B}=\quad$ where A and B are subjects of the universal

$$
p \rightarrow(q \wedge \sim r)
$$

c) Construct a truth table for the statement

$$
[(\mathrm{p} \wedge \mathrm{q}) \wedge p] \rightarrow q
$$

d) Show that the conditional statement is a tautology
e) Determine the values of x that make the following statements to be true.

$$
4+3=5 \text { if and only if } x+3=9
$$

Question Four

a) Define the following terms:
(i) Null matrix
(1 mark)
(ii) Triangular matrix
(2 marks)
(iii) Principal minors

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
3 & -1 & 1 \\
-1 & 3 & 4
\end{array}\right]
$$

b) If
c) Use Cramer's rule to solve.

$$
\begin{aligned}
& x+2 y+3 z=6 \\
& 2 x+y+z=5 \\
& 3 x+y-2 z=1
\end{aligned}
$$

d) Two factory outlets F1 and F2 in New York and Los Angeles sell sofas (s), chairs © and tables. T with a profit of 110, 45 and 80 respectively. The sales in a certain week were given by the matrix.

$$
\mathrm{A}=\begin{array}{ccc}
\mathrm{S} & \mathrm{C} & \mathrm{~T} \\
{\left[\begin{array}{ccc}
600 & 400 & 100 \\
300 & 820 & 205
\end{array}\right]}
\end{array} \begin{gathered}
\\
F 1 \\
F 2
\end{gathered}
$$

Find the total profits for F1 and F2
(2 marks)

Question Five

a) Define the terms Eigen value and Eigen vector

$$
A=\left[\begin{array}{cc}
-5 & 2 \\
2 & -2
\end{array}\right]
$$

b) If calculate:
(i) Eigen values of A
(3 marks)
(ii) Eigen vectors of A

$$
P 0(-3,0,7)
$$

c) Find a Cartesian equation for the plane through perpendicular to the vector $w v=5 i+2 j-k$
(3 marks)

$$
\overrightarrow{\mathrm{A}}=2 i-3 j+7 k
$$

d) If , determine the direction of
e) Show that the conditional and contra positive statements are equivalent and that the converse and inverse statement are equivalent.

