

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF MEDICAL LABORATORY SCIENCES

APS 4111: INTRODUCTION TO PHYSICS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

This paper consists of **FOUR** printed pages

Question One (Compulsory)

a) State the dimensions of G in terms of the base units in the expression of gravitational force:

$$F = \frac{GM_1M_2}{R^2}$$

where M_1 , M_2 are masses of interacting objects F is the gravitational force, and R is the distance of separation between interacting masses. (4 marks)

- b) State Newton's second and third laws. (4 marks)
- c) State and explain two types of friction. (4 marks)
- d) A stone is thrown vertically upwards with an initial velocity of 25ms⁻¹. Determine the greatest height above the ground attained by the stone and the time taken to reach that height. (4 marks)

© 2014 - Technical University of Mombasa

- **e)** (i) State Ohm's law
 - (ii) Other than temperature, explain TWO factors that influence the resistance of a linear conductor of electric current. (2 marks)
- f) Show that the effective resistance R_T of three resistors connected in parallel is given as:

$$R_T = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3}$$

B

g) Define magnetic field and state its SI unit.

h) Explain TWO types of diffraction of light.

Question Two

- a) Define internal energy of a substance.
- b) What is molar heat capacity
- c) A part from supply of heat, state TWO other ways of increasing internal energy of a body.
- (2 marks)
 d) Calculate the quantity of heat required to raise the temperature of a metal block with heat capacity of 23.1J°C⁻¹ by 30°C
 (3 marks)
- e) A vertical steel wire 350cm long with a diameter of 0.100cm has a load of 8.50kg applied at its lower end.
 - (i) Find the extension produced
 - (ii) Find the energy stored in the wire (Young's modulus = $2.00 \times 10^{11} \text{ Nm}^{-2}$) (3 marks)

f) A particular resistor has a resistance at a Celsius temperature as measured by a constant volume $R_{\theta} = 50 + 0.17\theta + 3 \times 10^{-4}\theta^{2}$

gas thermometer. Given , calculate the temperature as measured on the scale of the resistance thermometer which corresponds to 60° C on the gas thermometer.

Question Three

- a) Define electric current and state its SI unit.
- b) A circuit contains five resistors connected to a battery with 12.0V e.m.f as shown in the figure below.

(1 mark)

(4 marks)

(2 marks)

(2 marks)

(1 mark)

(4 marks)

(5 marks)

(2 marks)

Calculate:	
(i) The effective resistance of the circuit	(3 marks)
(ii) The potential difference across the 5Ω resistor	(3 marks)
(iii) The current flowing through the 4 Ω resistor	(3 marks)

c) In the figure below,
$$C_1 = C_2 = C_3 = C_4 = 2.0 \mu F$$

Calculate:

(i) The effective capacitance of the circuit	(3 marks)
(ii) The charge on capacitor C_1	(3 marks)
(iii) The potential difference across the capacitor C ₄	(3
marks)	

Question Four

- **a)** Explain the following terms as used in concave mirrors:
 - (i) Principal focus
 - (ii) Centre of curvature
 - (iii) Pole of the mirror
 - (iv) Linear magnification

b) An object is placed 10cm from:

(i) A converging lens

(ii) A diverging lens, of focal length 15cm. Calculate the linage position and magnification in each case (6 marks)

c) Explain the following lens observations:

(i) Astigmatism	(2 marks)
(ii) Curvature of field	(2 marks)
(iii) Distortion	(2
marks)	

d) An object of height 2cm is placed 20cm from a thin converging lens. A real image, 6cm is produced. Calculate the focal length of the lens. (4 marks)

(4 marks)

Question Five

a) Show that the third equation of linear motion is given by:	
$V^2 = U^2 + 2as$	
where the symbols used have the usual meanings.	(4 marks)
b) A coin is thrown vertically upwards from the ground with a speed of 10ms-1:	
(i) How long does it take to reach the highest point?	(3 marks)
(ii) What is the maximum height reached by the coin	(3 marks)

c) The figure below shows two masses M_1 ad M_2 attached to each other using an inextensible string of negligible mass:

Figure 3

If the masses accelerate over a frictionless table at 9ms⁻² when the tension of the string T, show that:

$a = \left(\frac{m_2}{m_1 + m_2}\right)g$	
(i) (i)	(8 marks)
$T = \left(\frac{m_2}{m_1 + m_2}\right)g$	
(ii)	(2 marks)