THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE (A Constituent College of JKUAT) (A Centre of Excellence) Faculty of Engineering \& Technology

DEPARTMENT OF COMPUTER SCIENCE \& INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN INFORMATION TECHNOLOGY (BSc. IT M111/12)

ICS 2205: DIGITAL LOGIC

END OF SEMESTER EXAMINATION
 SERIES: DECEMBER 2012
 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Highlight the characteristics of the decimal number system.
b) Perform the following operations:
(i) $0110_{2}-1000_{2}$ (Using the I's compliment)
(ii) $100.1 \mathrm{~B}_{16}-$ OFF.OD $_{16}$ (Convert your answer to decimal
(iii) $275_{8}+57_{8}$ (Convert your answer to hexadecimal)
c) Draw an electronic realization/equivalent of a NOT gate and explain its operation. (5 marks)
d) (i) Differentiate between a combinational logic and sequential logic.
(ii) Draw a logic circuit to implement a half odder, obtain the truth table.
e) Obtain a simplified expression for the K-map below and implement the simplified expression using logic gates.

Z

			A		
		00	01	11	10
	00	0	0	1	1
CD	01	1	0	1	1
	11	0	0	0	0
	10	1	1	1	1

Question Two

a) Describe the binary number system highlighting its characteristics.
b) Perform the following conversions:
(i) 62510 to Hexadecimal
(ii) $3 \mathrm{C} 8.23_{16}$ to octal
(iii) 110.325_{10} to binary
c) Perform the following arithmetic

$$
110100_{2} \div 100_{2}
$$

(i)
$47_{16}-37_{8}$
(ii)
$1101_{2} \times 111_{2}$
(iii) leaving your answer in hexadecimal.
d) Perform the following logic operations:

$$
11011_{2} \text { and } 10010_{2}
$$

(i)

$$
010101_{2} \times 0 R 001010_{2}
$$

(ii)
(iii) Determine the 2's compliment of

Question Three

a) Prove the following Laws of Boolean Algebra:

$$
\begin{equation*}
A+\bar{A} B=A+B \tag{i}
\end{equation*}
$$

$A+B C=(A+B)(A+C)$
(ii)
b) For the logic circuit below (figure 1)
(i) Determine the expression for the output Z
(ii) Simplify the expression using Boolean Algebra
(iii) Implement the simplified expression using logic gates.

Figure 1

c) From the truth below:
(i) Determine the expression for the output Y and simplify it.
(ii) Implement the expression for Y using NOR gates only

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{Y}
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Question Four

a) Describe a K-Map and explain how it can be used to minimize an output expression (Z) having three inputs m, n and p .
b) Simplify the following expression using K-Map and implement the simplified expression.

$$
Z=(\overline{\overline{A+B} \bullet C})+C A \bullet \overline{B+C}
$$

c) Determine the expression for the following K-Maps.
(i)

AB

	00	01	11	10
00	0	1	0	0
01	1	0	1	1
11	0	1	1	0

10 | | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- |

(ii)

Question Five

a) (i) Describe how a multiplexer operates.
(ii) Write the expression for a 4-1 line demultiplexer and implement the expression using logic gates.
b) Differentiate between asynchronous and synchronous sequential circuits.
c) Draw a NAND gate realization of an edge triggered O flip flop and explain the operation of the flip flop.
d) Design a logic circuit with three inputs variables that will produce a " I " output when only two input variables are I's

