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SECTION A (COMPULSORY) 

Question One (30 marks)

a) Evaluate:
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2231

5232

2352
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
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(5 marks)
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b) Use Cramer’s rule to solve the simultaneous equations:

143

452



yx

yx

(5 marks)

c) Evaluate 
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


 (1 mark)
and hence solve the simultaneous equations.
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(3 marks)

d) Given 
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00220

001003
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00005

A

 find the Eigen values. (4 marks)

e) Determine an LU-Decomposition of the following matrix.
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

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











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263

874

˜
A

(6 marks)

f) Find the eigen values and the corresponding eigenvectors of the matrix 









53

24

(6 marks)

SECTION B (Answer any TWO questions from this section) 

Question Two (20 marks)

a) Use row reduction to reduce the system given below into an upper triangular matrix and solve it.

8624

1653

543

321

31

321

2






xxx

xxx

xxx

(9 marks)

b) Use the Adjoint matrix method to solve the simultaneous equations.
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951

824

5432

32

32

321






xxx

xx

xxx

(11 marks)

Question Three (20 marks)

a) Find the eigenvalues and eigenvectors for the matrix:

















005

261

104

˜
A

(10 marks)

b) Use Cramer’s rule to solve the system of linear equation:

132

8253

132






zyx

zyx

zyx

(10 marks)
Question Four (20 marks) 

a) Given that 








 


26

46
˜
A

, evaluate 
895)( 2  xxAP

(5 marks)
b) Convert the following matrix into row-echelon form.





















1

13

4

103

321

112

 (5marks)

c) Solve the following system of equations using your result in 4(b)

13

1332

42





zx

zyx

zyx

(3 marks)

d) Use row reduction to find the inverse of the matrix 




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
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





459
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003

(7 marks)
Question Five (20 marks)
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a) The  solution  to  the  system  of  equations  having  the  form  AX  =  B  can  be  found  by  matrix
multiplication.
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
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

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
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





4

2

3

202

212

110

X

i) Find the original system of equations (8 marks)
ii) Find the solution of the system (3 marks)

iii) Find the cofactor matrix of 

















754

221

332

and hence find its inverse (7 marks)
b) Define the term pivoting as used in solutions of equations (2 marks)
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