

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF COMPUTER SCIENCE & INFORMATION TECHNOLOGY

UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN INFOR & COMM TECH BACHELOR OF TECHNOLOGY IN INFOR & COMMUN TECH – BSCIT 11M & BTECH ICT 11M2

ICS 2200: ELECTRONICS/EIT 4204: FOUNDATIONS OF ELECTRONICS

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2011 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Answer booklet

Answer question **ONE (COMPULSORY)** in section A and any other **TWO** questions from section B Maximum marks for each part of a question are clearly shown. This paper consists of **FOUR** printed pages

SECTION A – Compulsory

Question 1 (30 marks)

(a)	(i) Explain briefly any TWO advantages of an oscilloscope over a multi-meter	
	(ii) Explain briefly any disadvantage of an oscilloscope, compared to a multi-meter	(3 Marks)
(b)	State any FOUR SI units commonly used electronic measurements	(4 Marks)
(c)	Describe FOUR types of capacitors	(4 Marks)
(d)	Describe briefly the construction of Field Effect Transistor	(4 Marks)
(e)	(i) Describe TWO application of feedback in electronic circuits	
	(ii) Explain the importance of standards (SI units) in electronic measurements	(4 marks)
(f)	(i) Describe <i>ionization</i> as applied in electronics	
	(ii) Outline any TWO types of ionization	(3 Marks)
(g)	Explain how a transistor can be used as a switch	(4 Marks)
(h)	Distinguish between the terms electronics and electricity	(2 Marks)
SECTION B (ANSWER ANY TWO OUESTIONS)		

Question 2 (20 marks)

(a) (i) describe the V-I characteristic of a P-N junction diode with the aid of a well labeled diagram
(ii) Name any FOUR major parts of the V-I characteristics in a) (i) above (8 Marks)
(b) (i) State THREE main bipolar transistor configurations.
(ii) Describe with the aid of a sketch how the configurations in b) (i) above are attained. 12 Marks
Question 3 (20 marks)
(a) (i) Draw the symbols for the TWO types of bipolar transistors

- (ii) Describe with the aid of a diagram the **THREE** configuration of a transistor (8 Marks)
- (b) Distinguish between the following types of operational amplifiers Op-amps
 - (i) Inverting op-amp and non-inverting Op-Amp with the aid of a sketch
 - (ii) Differential Op- amp and Summing Op-amp (12 Marks)

Question 4 (20 marks)

- (a) (i) State thevenin's theorem
 - (ii) Explain ONE advantage of using Thevinin's theorem
 - (ii) Calculate the equivalent voltage source
 - (iii) Calculate the equivalent resistance
 - (iv)Calculate the current through a resistor Rl of 5.5 K $\!\Omega$ is connected between A and B

(8 Marks)

(6 Marks)

(6 Marks)

- (b (i) State Norton's theorem
- (ii) Find the equivalent source current of Fig 1
- (iii) Find the current through resistor Rl of 1.75 K Ω connected across terminals A &B
- (iv) State **TWO** key steps involved in Norton's theorem calculations
- (a) Explain with the aid of a diagram the internal resistance considerations and how a multi-meter is connected in a circuit to measure.
 - (i) Current
 - (ii) Voltage
 - (ii) Resistance

Question 5 (20 marks)

- (a) (i) Describe briefly any **FIVE** types of resistors
 - (ii) State the colour code for the following resistors
 - 67 KΩ
 47 MΩ (7 Marks)
- (b) (i) Find the voltage drop across all the resistors using Kirchoff's Law
 - (ii) Calculate the current through all the resistors using superposition theorem.

DATA: $V_a = 36 V$, $V_b = 24 V$, $R_1 = 10 \square$, $R_2 = 15 \square$, $R_3 = 20 \square$

(8 Marks)

(c) (i) Define inductor

(ii) Describe FOUR types of inductors

(5 Marks)