

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 11) DIPLOMA IN CIVIL ENGINEERING (DC 11)

EBC 2310: HYDROLOGY

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination

- Answer Booklet

This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One**

- **a)** Define the following terms:
 - Rain (i)
 - (ii) Smog Б

	(iii) (iv)	Sleet	(10 marks)
b)	Outlin	e THREE factors that affect precipitation at a specific location	(6 marks)
c)	Briefly	y explain the term "artificial precipitation"	(4 marks)

Question Two

- **a)** With the aid of a sketch, explain the working principle of a tipping bucket raingauge **(6 marks)**
- **b**) During an exercise to determine the average precipitation of a certain catchment, Thiessen polygons were constructed for a network of eight raingauge stations and the resulting data is shown in table 1. Determine the average precipitation using:
 - Arithmetic mean method (i)
 - Thiessen polygon method (ii)

Table 1

Station	Р	Q	R	S	Т	U	V	W
Precipitation	4	4.8	3.8	5.5	4.9	3.7	2.5	4.0
Area of polygon (ha)	15	415	475	66	358	498	104	72

Question Three

- **a)** Outline FOUR factors that affect the rate of evaporation
- **b)** Sketch and label a USWB class A evaporation pan
- c) The data shown in table 2 were obtained from an evaporation pan at a certain station. The standard cup used holds 0.5mm equivalent of rainfall. Determine the evaporation rate for that station during that period (6 marks)

Day	1	2	3	4	5	6	7	
Rainfall in mm	28	12	24	16	0	10	12	
No. of cups	20	-	-	-	-	-	-	
removed								
No. of cups added	-	12	-	-	28	16	12	

Question Four

(14 marks)

(6 marks)

(8 marks)

- **a)** A basin has the following details
 - Axial length (i.e. length of main stream) 6km
 - Length of ridgeline 13.5km
 - Area of catchment 7.0km2
 - Tetaino of streams 40

Determine the following characteristics of the catchment.

- (i) Drainage density
- (ii) Form factor
- (iii) Shape factor
- (iv) Stream density
- (v) Circularity ratio
- (vi) Elongation ratio
- (vii) Shape factor
- (viii) Compactness coefficient
- **b)** Define the following types of streams:
 - (i) Influent
 - (ii) Ephemeral

Question Five

a) The data shown in table 3 was obtained during a stream flow exercise. Determine the discharge using the "mean section" method. (12 marks)

Table 3

Distance from left bank (m)		2.0	3.8	5.6	7.6	9.8
Depth of vertical (m)	0	0.60	1.21	0.80	0.60	0
Mean velocity in vertical (ms)	0	0.72	1.31	0.83	0.68	0

- **b)** With the aid of a sketch, illustrate the following:
 - (i) Perched water aquifer
 - (ii) Unconfined aquifer
 - (iii) Confined aquifer
 - (iv) Artesian well

(8 marks)

(16 marks)

(4 marks)