

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR DECREE IN:
 BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE Y3 S1)

ECE 2305: HYDRAULICS I
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Pocket Calculator

This paper consists of FOUR questions. Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required
This paper consists of TWO printed pages

Question One (Compulsory)

a) Define the following:
(i) Turbulent flow
(ii) Steady flow
(iii) Lamina flow
(iv)Normal depth
(v) Critical depth
b) Calculate the normal flow depth in a trapezoidal channel with side slopes 1 in 1.5 , bottom width 7.6 m and channel slope 0.00088 , and if the discharge is $42 \mathrm{~m}^{3} / \mathrm{s}$ and mannings coefficient is 0.02
(10 marks)
c) The specific energy in non-uniform flow can be varied, explain
(2 marks)
d) A channel of 5 metres wide is discharging $20 \mathrm{~m}^{3} / \mathrm{s}$ of water. Determine the depth of water, when the specific energy of the flowing water is minimum
(13 marks)

Question Two

a) State a method of dimensional analysis that involves a large number of variable that is dimensionally homogeneous.
(5 marks)
b) Calculate the most economical cross-section of a rectangular channel to carry $0.3 \mathrm{~m}^{3} / \mathrm{s}$ of water when bed slope is in 1000. Assume Chezy's C $=60$
(10 marks)
c) A cement-lined rectangular channel 6 metres wide carries water at the rate of $30 \mathrm{~m}^{3} / \mathrm{s}$. Find the value of manning's constant if the slope required to maintain a depth of 1.5 m is $1 / 625$ (5 marks)

Question Three

a) Show that for a circular culvert of diameter D the velocity of flow will be a maximum when the depth of flow h at the centre is 0.8 D
(10 marks)
b) Water at the rate of $0.4 \mathrm{~m}^{3} / \mathrm{s}$ flows through a 1 metre vitrified sewer, when the sewer pipe is half full. Calculate the slope of the water, if mannings $n=0.013$
(10 marks)

Question Four

a) Determine the maximum discharge over a broad-rested weir 60 m long having 0.6 m height of water above its crest. Take coefficient of discharge as 0.595 . Also upstream side of the weir has a crosssectional area of $45 \mathrm{~m}^{2}$
b) The horizontal scale of a turbine model is $1 / 15$. If the speed of the prototype is 300 r.p.m under a head of 10 m , calculate the speed of the model r.p.m under a head of 200 mm

Question Five

a) Show that the discharge of a centrifugal pump is given by;

$$
Q=N D^{3} f\left[\frac{g H}{N^{2} D^{2}}, \frac{\mu}{N D^{2} \rho}\right]
$$

Where N is the speed of the pump in r.p.m D the diameter of the impeller, g acceleration due to gravity, H manometric head ${ }^{\mu}$ viscosity of fluid and ${ }^{\rho}$ the density of the fluid
(20 marks)

