

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING

DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 11) DIPLOMA IN CIVIL ENGINEERING (DC 11)

EBC 2309: HYDRAULICS

END OF SEMESTER EXAMINATION
SERIES: AUGUST 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.

Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One

a) Define the following types of flow:
(i) Steady uniform flow
(ii) Steady non uniform flow
(6 marks)
b) A trapezoidal channel has a bed slope of $1: 4000$. The bed width is 8 m and the depth of flow is 2.4 m . The side slopes at $1: 3(\mathrm{H}: \mathrm{V})$ and manning's $\mathrm{n}=0.0197$. Determine:
(i) Average flow velocity
(ii) Discharge in the channel
(10 marks)
c) Explain the importance of the following in open channel design:
(i) Free board
(ii) Minimum permissible velocity
(4 marks)

Question Two

A concrete lined sewer is 3.6 m in diameter and has a bed slope of 1:600. If Chezy's $\mathrm{C}=50$, determine:
(i) Maximum velocity
(ii) Discharge at maximum velocity
(iii) Maximum discharge
(iv) Mean velocity at maximum discharge
(20 marks)

Question Three

a) Design a rectangular channel using the following data:
(i) Flow is $50 \mathrm{~m}^{3} / \mathrm{s}$
(ii) Bed slope is 1:1000
(iii) Chezy's coefficient $\mathrm{C}=50$
(10 marks)
b) The triangular gutter shown in figure 1 is conveying water at a rate of $0.04 \mathrm{~m}^{3} / \mathrm{s}$. If manning's $\mathrm{n}=$ 0.012 , determine the gradient of the channel.
(10 marks)

Figure 1

Question Four

a) A channel of rectangular section, 4 m wide is discharging water at a rate of $6 \mathrm{~m}^{3} / \mathrm{s}$ with a velocity of $1.2 \mathrm{~m} / \mathrm{s}$. determine:
(i) The normal depth
(ii) Specific energy of the flowing liquid
(iii) The critical depth
(iv) The critical velocity
b) Water is flowing at a rate of $7.2 \mathrm{~m}^{3} / \mathrm{s}$ in a rectangular channel 4.5 m wide. If the depth of flow is 1.5 m , determine:
(i) The critical depth of flow
(ii) Type of flow based on Froude's number
(iii) Critical velocity

Question Five

With the aid of sketches, briefly describe the working principle of:
a) A double acting reciprocating pump
b) A pelton when turbine

