

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 11) DIPLOMA IN CIVIL ENGINEERING (DC 11)

EBC 2309: HYDRAULICS

END OF SEMESTER EXAMINATION SERIES: AUGUST 2013 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet This paper consists of FIVE questions.

(6 marks)

(4 marks)

(20 marks)

(10 marks)

Answer any **THREE** questions Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages **Question One**

- **a)** Define the following types of flow:
 - (i) Steady uniform flow
 - (ii) Steady non uniform flow
- **b)** A trapezoidal channel has a bed slope of 1:4000. The bed width is 8m and the depth of flow is 2.4m. The side slopes at 1:3 (H:V) and manning's n = 0.0197. Determine:
 - (i) Average flow velocity
 (ii) Discharge in the channel
 (10 marks)
- **c)** Explain the importance of the following in open channel design:
 - (i) Free board
 - (ii) Minimum permissible velocity

Question Two

A concrete lined sewer is 3.6m in diameter and has a bed slope of 1:600. If Chezy's C = 50, determine:

- (i) Maximum velocity
- (ii) Discharge at maximum velocity
- (iii) Maximum discharge
- (iv) Mean velocity at maximum discharge

Question Three

- **a)** Design a rectangular channel using the following data:
 - (i) Flow is $50m^3/s$
 - (ii) Bed slope is 1:1000
 - (iii) Chezy's coefficient C = 50
- b) The triangular gutter shown in figure 1 is conveying water at a rate of 0.04m³/s. If manning's n = 0.012, determine the gradient of the channel. (10 marks)

Figure 1

Question Four

- **a)** A channel of rectangular section, 4m wide is discharging water at a rate of 6m³/s with a velocity of 1.2m/s. determine:
 - (i) The normal depth
 - (ii) Specific energy of the flowing liquid

	(iv)	The critical velocity	(10 marks)	
b)) Water is flowing at a rate of 7.2m ³ /s in a rectangular channel 4.5m wide. If the depth of flow is 1.5m			
	determ	une:		
	(i)	The critical depth of flow		
	(ii)	Type of flow based on Froude's number		
	(iii)	Critical velocity	(10 marks)	

Question Five

(iii)

The critical depth

With the aid of sketches, briefly describe the working principle of:

a)	A double acting reciprocating pump	(10 marks)
b)	A pelton when turbine	(10 marks)