TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE)

ECE 2404: HIGHWAY ENGINEERING I

END OF SEMESTER EXAMINATION
SERIES: AUGUST 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet

This paper consists of FIVE questions.
Answer question ONE (COMPULSORY) in section A and any other TWO questions from section B
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

SECTION A

Question One (Compulsory)

a) A vertical curve crosses a 1.22 m diameter pipe at right angles. The pipe is located at station $3+38$ and its centre line is at elevation 333M. The PI of the vertical curve is at station $3+353$ and elevation 335 M . The vertical curve is equal tangent 183 m long and connects an initial grade $+1.2 \%$ and a final grade of -1.08%. Using offsets:
(i) Determine the depth, below the surface of the curve, of the top the pipe
(ii) Determine the station of the highest point on the curve.
b) (i) A roadway is being designed for a speed of $113 \mathrm{~km} / \mathrm{hr}$. At one horizontal curve, it is known that the super elevation is 8% and the coefficient of side friction is 0.10 . Determine the minimum radius of curve that will provide for safe vehicle operation
(ii) State TWO situations where roundabouts are placed.
(5 marks)

SECTION B (Attempt any TWO questions)

Question Two

a) With the aid of diagrams, illustrate the following interchange configurations:
(i) Channelized y intersection
(ii) Plain Four-leg intersection used for minor Roads
(iii) Trumpet
(iv) Clover leaf with off-line weaving section
(12 marks)
b) Compute curve elevations and offsets from tangents at 25 m intervals including full stations for a 350 m vertical curve joining a $+2.7 \%$ grade with a -1.50% grade. Assume PI is at station $150+00$ and elevation 25.00 m
(8 marks)

Question Three

The allowable side friction factor for horizontal curves with a design speed of $100 \mathrm{~km} / \mathrm{h}$ is O.R.
a) Determine super elevation rate that would be used for curve with a design speed of $100 \mathrm{~km} / \mathrm{h}$ and a radius of 420 m .
b) A spiral transition curve is used to go from a normal crown slope with 2% cross-slopes grade between the centerline and the edge is $1 / 200$ and the roadway consists of the 3.6 m lanes. Determine the length of the spiral.
(20 marks)

Question Four

a) In the design of Highways, outline any SIX elements that are influenced by the performance characteristics of vehicles.
(6 marks)
b) A circular curve with a radius of 350 m is connected by 60 m spiral transition curves to tangents with deflection angle of 0.349 rad . If the station of the TS is $105+40$, determine the station of SI.
(14 marks)

Question Five

A vertical curve joins a -2.0% grade to a $+0.5 \%$ grade. The PI of the vertical curve is at station $100+100$ and elevation 69.50 m above sea level. The centerline of the roadway must clear an overhead structure located at station $99+20$ by 5.67 m . The elevation of bottom of the structure is 77.45 m above sea level. Determine the maximum length of vertical curve that can be used.
(20 marks)

