# THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE 

 (A CONSTITUENT COLLEGE OF JKUAT)Faculty of Engineering and Technology DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING
Diploma in Mechanical Engineering (Plant)
Diploma in Mechanical Engineering (Production)
Diploma in Mechanical Engineering (Automotive)

## EME 2201 <br> THERMODYNAMICS I

YEAR II SEMESTER I SPECIAL/SUPPLEMENTARY EXAMINATIONS
SERIES: OCTOBER, 2011
TIME: 2 HOURS

## Instructions to Candidates:

You should have the following for this examination:

- Scientific Calculator
- Steam/Vapour Table
- Mathematical Tables

This paper consists of FIVE questions.
Answer Question ONE and any other TWO Questions.
This paper consists of 4 printed pages.
Question ONE (COMPULSORY)
(a) Define the following with reference to thermodynamic:
(I) Working substance
(II) Cycle
(III) Homogeneous system
(b) Define the following THREE types of properties giving TWO examples of each property:
(I) Intensive properties
(II) Extensive properties
(III) Specific properties
(6 Marks)
(c) (i) Derive the steady flow energy equation from first principles.
(ii) A turbine uses steam whose velocity at the carry is $16 \mathrm{~m} / \mathrm{sec}$ and specific enthalpy $2990 \mathrm{~kJ} / \mathrm{kg}$. Heat lost to the surroundings as the steam passes through the turbine is $25 \mathrm{~kJ} / \mathrm{kg}$. The steam flow rate is $34000 \mathrm{~kg} / \mathrm{hr}$. Calculate the work done (output) from the turbine.
(18 Marks)

## Question TWO

(a) Define the following processes:
(i) Hyperbolic process
(ii) Isobaric process
(iii) Adiabatic process
(b) In a closed system, 1 kg of air initially at $100 \mathrm{kN} / \mathrm{m}^{2}$ and $27^{\circ} \mathrm{C}$ is compressed adiabatically to $3 \mathrm{mN} / \mathrm{m}^{2}$, and then expanded isothermally back to the original volume. Determine the excess of work done by the gas over work done on the gas.

$$
12=287 \mathrm{~J} / \mathrm{kgk} \quad \text { and } \quad \gamma=1.4
$$

Take for air. Sketch a PV diagram for the process.
(c) 1 kg of gas expands adiabatically in a closed system until its pressure is halved. $240^{\circ} \mathrm{C}$ to $145^{\circ} \mathrm{C}$.
During the expansion its temperature falls from Calculate the value of the adiabatic index.
(7 Marks)
Question THREE
(a) Show that for a closed system going through a non flow process:
$Q=\frac{\gamma-n}{\gamma-1} \times$ Poly tropic work

Where:
$\mathrm{Q}=\quad$ Heat label in or rejected
$\gamma$
$=\quad$ Adiabatic index
$\mathrm{n} \quad=\quad$ Polytropic index
(b) A spark ignition engine has a cylinder diameter of 95 mm and a stroke of 127 mm , clearance volume $230 \mathrm{~cm}^{2}$. The temperature at the beginning of compression is $57^{\circ} \mathrm{C}$. Calculate:
(i) The temperature at the end of stroke
(ii) Work done during the compression stroke. Take $\mathrm{PV}^{1.3}=\mathrm{C}$ and initial pressure as $100 \mathrm{kN} / \mathrm{m}^{2}$.
(20 Marks)

## Question FOUR

(a) Show that for a polytropic process of steam, heat transfer for unit mass is given by:
$Q=\left(h_{2}-h_{1}\right)+\frac{n}{n-1}\left(P_{1} V_{1}-P_{2} V_{2}\right)$

Where:

Q $=$ Heat transfer
$h_{2}=$ Fuel enthalpy
$\mathrm{h}_{1}=$ Initial enthalpy
$\eta=$ Polytropic index
$P_{1}=$ Initial pressure
$\mathrm{v}_{1}=\quad$ Initial volume
$v_{2}=$ Final Volume
(10
Marks)
(b) (i) Calculate the volume of steam occupied by 1 kg of steam at a
pressure of $0.85 \mathrm{MN} / \mathrm{m}^{2}$ and having a dryness fraction of 0.95 .
(ii) The steam in (i) above is expanded to a pressure of $0.17 \mathrm{MN} / \mathrm{m}^{2}$, according to
the law of expansion being $\mathrm{PV}^{1.13}=\mathrm{C}$. Calculate:
(I) Final dryness fraction of steam.
(II) The change of internal energy of the steam during the expansion.
(10
Marks)

## Question FIVE

(a) 1 kg of steam is compressed in a closed system according to the law $\mathrm{PV}^{1.2}$ = C
from a pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$ and dryness fraction 0.80 to a final pressure of $220 \mathrm{kN} / \mathrm{m}^{2}$. Calculate:
(i) The final condition of steam.
(ii) The external work done on the steam.
(iii) The heat flow across the boundaries of the system.
(10
Marks)
(b) 1.5 kg of steam originally at a pressure of $1 \mathrm{Mn} / \mathrm{m}^{2}$ and temperature $225^{\circ} \mathrm{C}$ is
expanded until the pressure becomes $0.28 \mathrm{Mn} / \mathrm{m}^{2}$. The dryness fraction of the
steam is then 0.9. Calculate the change of internal energy.
Marks)
(c) 1 kg of steam initially 0.8 dry is throttled from a pressure of $600 \mathrm{kN} / \mathrm{m}^{2}$ to a pressure of $100 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the dryness fraction of steam after throttling. (5 Marks)

