

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health Sciences

DEPARTMENT OF MATHEMATICS & PHYSISCS CERTIFICATE IN UPGRADING MATHEMATICS (UMTH 15J)

AMA 1002: GEOMETRY

END OF SEMESTER EXAMINATION SERIES: APRIL 2015 TIME ALLOWED: 2 HOURS

Instructions to Candidates: You should have the following for this examination - Answer Booklet - Mathematical Table This paper consist of FIVE questions Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown

Question One (Compulsory)

- **a)** Explain the following angles:
 - (i) Complementary angles
 - (ii) Reflex angles
 - (iii) Supplementary angles
- **b)** The figure below shows a circle ABCDE. The line FEG is a tangent to the circle at a point E. Line OE is parallel to CG, <DECE = 28° and AGE = 32°

Calculate <AEG and <ABC

- c) Calculate the height of a tree if a person 1.84m tall and is standing 16m away from the foot of the tree if the angle of elevation from his eye is 20°
 (3 marks)
- d) Calculate all the angles in a triangle whose lengths are 5.5cm, 4.2cm and 3.8cm (6 marks)

$$y = 3\cos(2t + 30^\circ)$$

e) Find the wavelength, amplitude and phase angle of

 $AB = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \qquad BC = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$

and

- f) When the angle of elevation of the sun is 30° a vertical pole casts a shadow of length 3m on a horizontal ground, calculate the height of the pole (4 marks)
- **g)** Two points A and B are in the same latitude and on the longitudes 30°W and 60°E respectively. If α the shortest distance along the circle of latitude between A and B is 5005km, calculate the value of (4 marks)

find:

h) Given that vectors

(ii) -3AB

(i) AB + BC

(1 marks)

(4 marks)

(3 marks)

- 6 . 6

a mar ki

(3 marks)

 $\alpha^{o}N$

(i) QR in terms of q and r

(ii) PM in terms of q and r

SR in terms of q and r

(iii) AB – 2BC marks)

Question Two

	ϵ	9	$0 \le \theta \le 360$	$2\sin^2 2\theta + \sin 2\theta - 1 = 0$	
a)	Solve for	such that	and		(5 marks)

- **b)** For the following trigonometric equations, state the wavelength , amplitude and phase angle:
 - $y = \sin(3x + 60^{\circ})$ (i) $y = \sin(\frac{1}{2}x + 10^{\circ})$ (ii) $y = 3\cos(x + 40^{\circ})$ (iii)
 marks)
 (2 marks)
 (2 marks)
- c) A stool is made by shaping a stump into a conical frustum of vertical height 60cm. If the top radius is 12cm and the bottom one is 24cm. Calculate the surface area of the stool (9 marks)

Question Three

- a) Construct ABC in which AB = 4.5cm; BC = 6.5cm and AC = 7.5cm construct an escribed circle opposite to <ABC. Measure the radius of the circle. (7 marks)
- b) In the figure below, PQ = q and PR = r QM: MR = 1:2 or M divides QR in the ratio 1:2. The points is the midpoint of PQ x is the intersection of PM and SR SR = hSR, PX = kPM where h and k are constant:

Figure 2

c) A plane leaves a town T(20°S,35°N) and flies due north at a speed of 450knots to a town U(10°N, 35W). How long does the plane take to complete the journey (4 marks)

(iii)

(3 marks) (3 marks) (3 marks) a) Let A (2, 8), B(3, 5), C(1, 3), D(0, 6) be coordinates of the quadrilateral ABCD. Suppose T is the $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ translation with vectors , R is the rotation center (0,0) 90° anticlockwise and L is the reflection

on the line y = x. What is the image of ABCD after translation T followed by rotation R and the reflection L (8 marks)

b) In the figure below K, L, M and N are points on the circumference of a circle with center 0 the points K, O, M and P are on straight line PN is a tangent to the circle at N, <KOL = 130° and <MKN = 40°

Find the values of the following angles:

(i) <mln< th=""><th>(2 marks)</th></mln<>	(2 marks)
(ii) <mnp< th=""><th>(2 marks)</th></mnp<>	(2 marks)
(iii) <oln< th=""><th>(2 marks)</th></oln<>	(2 marks)
(iv) <mpn< th=""><th>(2 marks)</th></mpn<>	(2 marks)

c) Three trees A, B and C are such that $AC = 10 \text{ km} < BAC = 40^{\circ}$ and $< BCA = 30^{\circ}$ calculate:

 (i) AB
 (2 marks)

 (ii) BC
 (2 marks)

Question Five

a) Convert the following angles into radians:

	0 0	
(i) 10°		
(ii) 180°		
(iii) 270°		(3 marks)

- **b)** Calculate the values of x and y in the figure below QR is parallel to ST. **(4 marks)**
 - 5

c)	 Find the number of sides of: (i) A polygon having sum of interior angles 1080° (ii) A regular polygon if each exterior angle is 24° 	(3 marks) (3 marks)
d)	Prove the following, trigonometric identities: $\frac{(\cos\theta + \sin\theta)^2}{\cos\theta} = \sec\theta + 2\sin\theta$ (i)	(4 marks)
	(I)	(4 marks)
© 2015 – Technical University of Mombasa		Page 4

	$(\cos ec\theta + \cot \theta) \tan \theta$	$\cos\theta + 1$
	$\tan \theta + \sec \theta$	$\sin \theta + 1$
(ii)		

(3 marks)