TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN STATISTICS \& COMPUTER SCIENCE BACHELOR OF CHEMICAL ENGINEERING BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING

AMA 4102/SMA 2171: GEOMETRY

END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2014
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
\frac{\tan ^{2} \theta+2}{1+\tan ^{2} \theta}=1+\cos ^{2} \theta
$$

a) Show that
(3 marks)
b) Three circles with radii 4,5,6 cm respectively are tangent to each other externally. Find the smallest angle of the triangle whose vertices are the centre of the circle
(4 marks)
c) Express in polar form the Cartesian equation of the circle:

$$
x^{2}+y^{2}=4 x
$$

and hence graph the polar equation
$\sin 3 x+\sin x=0 \quad-180 \leq x \leq 180$
d) Solve for x :
for
e) Determine the equation of the curve that is the locus of all points equidistant from the line $x=-3$ and the point $(3,0)$ and name the curve
(5 marks)
f) Two banks of a rive are parallel and the distance between two points A and B along the same bank is 20 metres. For a point C on the opposite bank $\angle \mathrm{BAC}=56^{\circ}$ and $\angle \mathrm{ABC}=41^{\circ}$. Determine the width of the river.
(4 marks)
g) Convert
(i) 3.47 radians to degrees.
(2 marks)
(ii) 837° into radians

Question Two

a) Determine the equation of the circle that passes through the points $(2,8),(5,7)$ and $(6,6)$ and state its centre and radius.
(10 marks)

$$
0 \leq x \leq 360 \quad 7 \cos x+2 \sin x=4
$$

b) Solve for x within
(10 marks)

Question Three

a) Prove the identity:

$$
\frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=2
$$

(6 marks)
$12 \cos ^{2} \theta+\sin \theta=11 \quad 0 \leq \theta \leq 360$
b) Solve the equation if
(7 marks)
c) Determine the equation of the tangent to the curve:

$$
\begin{gather*}
x^{2}+y^{2}-4 x-2 y-8=0 \\
\text { and parallel to the line } \tag{7mark}
\end{gather*} 3 x+2 y=0
$$

Question Four

$$
\begin{equation*}
\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c} \tag{6marks}
\end{equation*}
$$

a) Show that for any triangle ABC
b) Express in rectangular form:

$$
\begin{aligned}
& r=\sin \theta \cot \theta \\
& \qquad y^{2}=\frac{4}{3} x
\end{aligned}
$$

c) Find the equation and length of the tangent line of at $(3,2)$
(7 marks)

$$
\sin (x-2)=\cos (x+\alpha) \quad \tan \alpha=1
$$

d) Given that: show that

Question Five

a) Find the points of contact of the horizontal and vertical tangent to the curve:

$$
\begin{aligned}
& y=3-4 \sin \theta \\
& y=4+3 \cos \theta
\end{aligned}
$$

marks)

b) The angle of elevation of the peak of a mountain from a point A is 35°. The angle of elevation from point B which is 500 m directly behind A is 25°. Determine the height of the mountain. (8 marks)

$$
\tan \theta=-4 / 3 \quad \theta \quad \frac{\sec ^{2} \theta+1}{17}
$$

c) If where is obtuse. Determine

