

TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR:
BACHELOR OF SCIENCE IN CIVIL ENGINEERING
BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING BACHELOR OF SCIENCE IN MECHANICAL \& AUTOMOTIVE ENGINEERING

AMA 4102: GEOMETRY

END OF SEMESTER EXAMINATION
 SERIES: AUGUST 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of TWO printed pages

Question One (Compulsory)

$$
-180^{\circ} \leq x^{\circ} \leq 360^{\circ}
$$

a) Solve within
(i)

$$
\sec ^{2} \theta+\tan ^{2} \theta=7
$$

$12 \sin x-5 \cos x=3.25$
(ii)
(5 marks)
(5 marks)
b) Two interior angles of a triangle measure 35° and 65°. If the perimeter of the triangle is 20 cm . Calculate the length of the longest side.
(4 marks)
c) P is the variable point (2at, at ${ }^{2}$) on the parabola $\mathrm{x}^{2}=4$ ay and is the foot of the perpendicular from point P to the x axis.
(i) Sketch the curve
(ii) Find the locus of the midpoint of PQ

$$
\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}
$$

d) Show that
e) Ship Q is cruising in a straight line towards port R. At $1000 \mathrm{~h}, \mathrm{R}$ is 73 km away from Q while another port is 63 km on a bearing 162° from R but on 282 from Q .
(i) How far is P from Q
(ii) Which will be the shortest distance from P to the course R.?

Question Two

$$
\tan \frac{1}{2} A= \pm \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}, S=\frac{a+b+c}{2}
$$

a) With the usual notation of a triangle ABC show that

Hence or otherwise express tan 15 in surd form.
b) A circle has its centre on the y-axis and passes through the points $(-2,1)$ and $(2,4)$. Find its equation, center and radius.
(8 marks)

Question Three

α
a) If L_{1} and L_{2} are non-perpendicular lines with slopes M_{1} and M_{2} respectively and be any angle from L_{1} to L_{2} prove that:
$\tan \alpha=\frac{M_{2}-M_{1}}{1+M_{1} M_{2}}$
b) Find the slope of the line bisecting the angle from L1 to L2 with respective slopes 3 and -2
(4 marks)

$$
y^{2}+12 x+4 y=56
$$

c) The curve

> is given:
(i) Sketch and name the curve, indicating its important features.
(ii) Show that the curve touches the line $x+y=6$ and find the point of contact P.
(iii) Calculate the distance of the focus from the tangent line in (ii) above.

Question Four

$$
\frac{1}{r}=\sqrt{2}-\cos \theta
$$

Consider the curve
a) Using 0 x as the initial ray sketch the curve.
(4 marks)
b) Express the curve in rectangular co-ordinates and hence name the curve.
c) Make a detailed sketch of the curve showing the centre, vertices, foci and directrices. (10 marks)

Question Five

$$
x^{2}-9 y^{2}=9
$$

The curve is given
a) Sketch and describe the curve fully
b) Find the equation of the tangents to the curve that are drawn from the point $(3,2)$ and find the points of contact.
c) Find the area of the triangle that these tangents form with their chords of contact.

