

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
 CERTIFICATE (UPGRADING MATHEMATICS)

AMA 1102: GEOMETRY
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Mathematical Tables
- Scientific Calculator

This paper consist of FIVE questions in TWO sections A \& B
Answer question ONE (COMPULSORY) and any other TWO questions

SECTION A (COMPULSORY)

Question One

a) With the aid of sketches, explain the following angles:
(i) complementary angles
(ii) reflex angles
(iii) supplementary angles
b) The figure below shows a circle ABCDE . The line FEG is a tangent to the circle at a pint E line DE is parallel to CG, $\angle \mathrm{DEC}=28^{\circ}$ and $\angle \mathrm{AGE}=32^{\circ}$

G
calculate $<$ AEG and $<\mathrm{ABC}$
(4 marks)
c) (i) Calculate the height of a tree if a person is 1.84 m tall and is standing 16 m away from the foot of the tree, if the angle of elevation from his eye is 20°
(ii) Calculate all the angles in a triangle whose lengths are $5.5 \mathrm{~cm} ; 42 \mathrm{~cm}$ and 3.8 cm
d) A pyramid frustrum has a square top and bottom with lengths of 6 cm and 10 cm respectively. The slant height of the frustrum is Jan open and in both ends. Calculate its surface area.
(5 marks)

SECTION B (Answer any TWO questions from this section)

Question Two

a) For the following trigonometric equations, state the wavelength amplitude and phase angle:

$$
y=-\sin \left(3 x+60^{\circ}\right)
$$

(i)

$$
y=\sin \left(1 / 2 x+10^{\circ}\right)
$$

(ii)

$$
Y=3 \cos \left(x+40^{\circ}\right)
$$

(iii)
$\theta \quad 0 \leq \theta \leq 360^{\circ} \quad 2 \sin ^{2} 2 \theta+\sin 2 \theta-1=0$
b) Solve for such that and
(5 marks)
c) A stool is made by shaping a stump into a conical frustrum of vertical height 60 cm . If the top radius $\pi=3.142$ is 12 cm and the bottom one is 24 cm . Calculate the surface are of the stool, take

Question Three

a) Construct ABC in which $\mathrm{AB}=4.5 \mathrm{~cm} ; \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{AC}=7.5 \mathrm{~cm}$. Construct an escribed circle opposite to $<\mathrm{ABC}$. Measure the radius of the circle
b) Two towns N and M are such that $\mathrm{M}\left(20^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ and $\mathrm{N}\left(20^{\circ} \mathrm{N}, 120^{\circ} \mathrm{E}\right)$ take the earth's radius to be

$$
\pi=22 / 7
$$

6370 km and
(i) calculate in kilometers the shortest distance between M and N along the same latitude
(ii) If the time at N is 0935h, what is it at M ?
(6 marks)

$$
P Q=q \quad P R=r Q M: M R
$$

c) In the figure below, $\quad \mathrm{e}$ and $1: 2$ or M divides QR in the ratio $1: 2$. The point S is the midpoint of PQ. X is the intersection of PM and $\mathrm{SR} . \mathrm{SX}=\mathrm{hSR}$

$$
\mathrm{PX}=\mathrm{kPM} \text { where } \mathrm{h} \text { and } \mathrm{k} \text { are constants: }
$$

X
find:
(i) $\quad \mathrm{QR}$ in terms of q and r
(ii) $\quad \mathrm{PM}$ in terms of q and r
(iii) $S R$ in terms of q and r
(7 marks)

Question Four

a) Let $A(2,8) B(3,5), C(1,3), D(0,6)$ be coordinates of the quadrilateral $A B C D$. Suppose that T is the $\binom{-1}{2}$
translation with vectors, R is the rotation center $(0,0), 90^{\circ}$ anticlockwise and L is the reflection on the line $\mathrm{y}=\mathrm{x}$ what is the image of ABCD after translation T followed by rotation R and the reflection L?
(9 marks)
b) In the figure below $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N are pints on the circumference of a circle with centre O . The points $\mathrm{K}, \mathrm{O}, \mathrm{M}$ and P are on a straight line, PN is a tangent to the circle at $\mathrm{N},<1<\mathrm{OL}=130^{\circ}$ and $<\mathrm{MKN}=$ 40°

Find the values of the following angles, stating the reasons in each case:
(i) $<$ MLN
(ii) $<$ MNP
(iii) $<$ OLN
(iv) $<\mathrm{MPN}$
(8 marks)
c) Given that vectors and work out:
(i) $\mathrm{AB}+\mathrm{BC}$
(ii) $1 / 2 \mathrm{BC}$
(iii) $\mathrm{AB}-2 \mathrm{BC}$
(3 marks)

Question Five

a) Convert the following angles into radians:
(i) 10°
(ii) 180°
(iii) 270°
(3 marks)
b) Derive the following identities:

$$
\sin ^{2} x+\cos ^{2} x=1
$$

(i)

$$
\cot ^{2} \theta-1=\operatorname{cosec}^{2} \theta
$$

(ii)
c) Calculate the values of x and y in the figure below QR is parallel to ST

T

d) Find the number of sides of:
(i) A polygon having sum of interior angles 1080°
(ii) A regular polygon if each exterior angle is 24°

