

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
DIPLOMA IN COMPUTER SCIENCE \& INFORMATION (DCIT/MAY13)

APS 2130: FUNDAMENTALS OF PHYSICS
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME: 2 HOURS

Instructions to Candidates:
You should have the following for this examination

- Answer Booklet
- Scientific Calculator
- Mathematical Tables

This paper consist of FIVE questions in TWO sections A \& B

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Constant $\mathrm{g}=10 \mathrm{Nkg} / 10 \mathrm{mg}^{2}$
$\mathrm{k}=9 \times 10^{9} \mathrm{~N} / \mathrm{C}^{2}$

SECTION A (COMPULSORY)

Question One

a) Name SIX basic quantities and their SI units.
b) A car travelling on a straight road at $2 \mathrm{~ms}^{-1}$ is uniformly accelerated at $2 \mathrm{~ms}^{-2}$ for 8 seconds. Calculate:
(i) It's displacement
(3 marks)
(ii) It’s final velocity
(3 marks)
c) If you are provided with a battery, two resistors, R1 and R2 and connecting wires, draw a circuit diagram with effective resistance:
(i) Maximum
(2 marks)
(ii) Minimum
(2 marks)
d) State the basic functions of the following electronic devices:
(i) Diode
(2 marks)
(ii) Transistors
(2 marks)
e) (i) What is the SI unit of Resistance
(ii) Determine the current in a lamp circuit, if 4800 coulombs of electricity flow through the lamp in 25 minutes.
(4 marks)
f) What is the speed of a wave motion, frequency 2.5 Hz and wave length 0.60 m ?
g) Give TWO examples of Intrinsic semiconductors.

SECTION B (Answer any TWO questions from this section)

Question Two

a) Define Force and state its effects.
b) (i) State the uses of dimensional analysis
(ii) Obtain the dimension of force in terms of base quantities.
c) (i) State Newton's second law of motion
(1 mark)
(ii) A body of mass 4 kg is resting on a horizontal surface as shown in the diagram below. A force of 100 N is applied on it horizontally.
(I) Indicate on the diagram other forces acting on it.
(II) If the frictional force between it and the surface is 40 N , calculate its acceleration
(III) What would happen to the body if the frictional force is 100 N
(2 marks)
d) A bus travels from Mombasa to Nairobi a distance of 480km in 8 hours. Find the average speed of the bus in m / s
(3 marks)

Question Three

a) Define (i) Electromotive force
(1 mark)
(ii) Electrical resistance
(1 mark)
Ω
b) The figure below shows four resistors and a source of voltage of 6 V with internal resistance of 1.0
(i) Find the effective resistance of the circuit
(4 marks)
(ii) The current through the 1 resistor
(iii) The potential difference across the 4 resistor
c) (i) What is meant by the term "Alternating current"?
(2 marks)
(ii) State TWO ways in which the magnitude of induced emf in a length of a conductor moving in a magnetic field can be increased.
d) Explain TWO characteristics of a wave

Question Four

a) State the law of electrostatic force
b) Explain the following: (i) Electric field
(ii) Electrostatic potential
(2 marks)
c) Draw the electric field of two point charges of the same positive charge close to each other.
d) Describe the construction of waxed paper capacitor.
e) A capacitor is marked 1000 . What is the charge on it at 20 V ?
f) Distinguish between a vector and a scalar quantity

Question Five

a) Name and indicate the sources of the radiations in the electromagnetic spectrum in their order of increasing wavelength
(7 marks)
b) The wavelength of the television carries wave from a transmitting station in $662 / 3 \mathrm{~m}$. Calculate its frequency.
c) Give ONE example of a digital and analogue system
d) Describe SIX sources of Energy
e) Explain the term "Band width"

