TECHNICAL UNIVERSITY OF MOMBASA
 Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE IN MARINE RESOURCE MANAGEMENT

APS 4109: FUNDAMENTALS OF PHYSICS
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Where necessary take:

- Acceleration due to gravity, $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
ε_{0}
- Permittivity of free space, $=8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
$e=-1.602 \times 10^{-19} \mathrm{C}$
- Charge an electron,
- Mass of an electron , $\mathrm{Me}=9.1 \times 10^{-31} \mathrm{~kg}$

Question One (Compulsory)

a) (i) State TWO limitations of dimensional analysis

$$
v^{2}=u^{2}+2 a s
$$

(ii) Show that the equation of motion usual meaning)
is dimensionally correct (the symbols have their
(3 marks)
b) (i) State the Coulomb's Law
(1 mark)
(ii) Two point charges are located in the positive x-axis of a coordinate system• Charge

$$
q_{2}=-3.0 n C
$$

and is 2.0 cm from the origin and is 4.0 cm from the origin. What is the total force

$$
q_{3}=5.0 n C
$$

exerted by those two charges on a charge located at the origin
c) (i) State TWO factors affecting frictional force on a body
(2 marks)
(ii) A $3.1 \times 10^{5} \mathrm{~kg}$ train is travelling up a plane inclined at 30°. If the coefficient of dynamic friction is $\mu k=0.25$
, calculate the force that the train engine should apply to maintain the motion at a constant velocity
d) (i) A body moving with a constant speed in a uniform circular path is said to be accelerating. Explain
(ii) A bus travelling at $80 \mathrm{~m} / \mathrm{s}$ is negotiating a curve. Calculate the force exerted on a 60 kg person leaning on the inner wall of the bus 50 m from the centre of the curve.
(2 marks)
e) (i) Show that for two resistors, R 1 and R 2 connected in parallel, the effective resistance R is given by: $R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$
(ii) The figure below shows a circuit diagram of resistors connected to a 24 v battery of negligible internal resistance

Determine the potential difference across the 3Ω resistor
(3 marks)
f) Define the following terms:
(i) Amplitude
(1 mark)
(ii) Wavelength
(1 mark)
g) A radiowave has a frequence of 3 mHz and travels with a velocity of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is its wavelength

Question Two

a) (i) What is an electric field?
(2 marks)
(ii) Given that the electric force between two charges is given by:

$$
F=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q_{1} Q_{2}}{r^{2}}
$$

. Show that the electric field between the test charge, Q1 and the point charge Q_{2} is given by:

$$
E=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q_{1}}{r^{2}}
$$

hence find the electric field of a particle of charge $1.26 \times 10^{-17} \mathrm{C}$ at a radius of $6.2 \times 10^{-15} \mathrm{~m}$
(iii) What is the magnitude of the electric field, E such that an electron placed in the field, would experience an electrical force equal to its weight?
(3 marks)
b) (i) In figure 2 below, the energy stored in C 4 is 27 J . Calculate the total energy stored in the system
(7 marks)

Figure 2
(ii) State TWO factors affecting the capacitance of a capacitor
(2 marks)

Question Three

a) (i) Differentiate between elastic and inelastic collisions
(ii) Two balls A and B are involved in a collision. If B is initially at rest while A was initially moving to the right when it collides with B then both stick and more off with a velocity of $2 \mathrm{~m} / \mathrm{s}$ to the right. Calculate the initial speed of A if its mass is half that of B
b) A body of mass 5 kg is attached to the hook of a spring balance hanging from the roof of a lift. What is the reading on spring balance when the lift is:
(i) Ascending at an acceleration of $0.6 \mathrm{~m} / \mathrm{s}^{2}$?
(ii) Descending at an acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2}$
(2 marks)
(iii) Ascending at a constant velocity marks)
c) A block of mass 5 kg is connected by a string over a frictionless pulley to a 10 kg block that is sliding on a frictionless table as shown:
(i) Draw a free body diagram for each mass
(2 marks)
(ii) Determine the acceleration of the system

Question Four

a) (i) Define electromotive force
(ii) State the Ohm's law
(iii) A rectangular carbon block has dimensions $1.0 \mathrm{~cm} \times 1.0 \mathrm{~cm} \times 50 \mathrm{~cm}$. What is the resistance measured between the two square ends. The resistivity of carbon at $20^{\circ} \mathrm{C}$ is $5 \times 10^{-5} \Omega \mathrm{~m}$
b) (i) A current of 0.2 A exists in 10 ohms resistor for 2 minutes. Find the number of electrons that passes through the cross-section of the resistor in this time
(ii) At what temperature would the resistance of a copper conductor be double its resistance at $\mathrm{O}^{\circ} \mathrm{C}$? The temperature of coefficient for copper is $0.0039^{\circ} \mathrm{C}^{-1}$
(3 marks)
c) A cell drives a current of 2.0 A through a 0.6Ω resistor. When the same cell is connected to a 0.9Ω resistor, the current flow is 1.5 A . Find the interval resistance and the e.m.f of the cell
(4 marks)
d) The figure 3 below shows four resistors and source voltage of 6 V with interval resistance of 0.2Ω
\square
(i) Find the effective resistance of the circuit
(ii) Calculate the current through the 2Ω resistance

Question Five

a) Arrange the following electromagnetic waves in order of increasing frequency

Radiowaves, x-rays, visible light, microwaves

$$
y=20 \sin (40 t-20 x)
$$

b) The equation
represents a plane wave travelling in the positive x -axis direction, y being the displacement of the particle at a point x. Find:
(i) The frequency of the wave
(ii) The wavelength of the wave
(iii) The speed of the wave
c) (i) Define the term radioactivity
(2 marks)
(ii) The half-life of a certain radioactive element is 16 years. What fraction of the element will be remaining after 48 years
d) (i) State TWO factors that affects the magnitude of induced e.m.f
(2 marks)
(ii) A flat coil of a wire with 50 turns and a cross-sectional area of $50 \mathrm{~cm}^{2}$ is placed in a magnetic

$$
B=0.45 T
$$

field with its plane perpendicular to the magnetic field . If the field is changing at the rate of $0.04 \mathrm{~T} / \mathrm{S}$, find the magnitude of the induced e.m.f at the terminals of the coil (5 marks)

