

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR DEGREE OF:

BACHELOR OF SCIENCE IN MARINE RESOURCE MANAGEMENT

APS 4109: FUNDAMENTALS OF PHYSICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2015

TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of **FIVE** questions

Answer question **ONE (COMPULSORY)** and any other **TWO** questions Maximum marks for each part of a question are as shown

This paper consists of **FOUR** printed pages

Where necessary take:

• Acceleration due to gravity, $g = 9.8 \text{m/s}^2$

 ${\cal E}_o$

• Permittivity of free space, $= 8.854 \times 10^{-12} \text{Fm}^{-1}$

 $e = -1.602 \times 10^{-19} C$

- Charge an electron,
- Mass of an electron , Me = 9.1×10^{-31} kg

Question One (Compulsory)

a) (i) State TWO limitations of dimensional analysis

 $v^2 = u^2 + 2as$

(ii) Show that the equation of motion is dimensionally correct (the symbols have their usual meaning) (3 marks)

b) (i) State the Coulomb's Law

(1 mark)

(2 marks)

(ii) Two point charges are located in the positive x-axis of a coordinate system. Charge

 $q_2 = -3.0nC$

and is 2.0cm from the origin and is 4.0cm from the origin. What is the total force $q_3 = 5.0nC$

exerted by those two charges on a charge located at the origin (4 marks)

c) (i) State TWO factors affecting frictional force on a body (2 marks) (ii) A 3.1 x 10⁵kg train is travelling up a plane inclined at 30°. If the coefficient of dynamic friction is $\mu k = 0.25$

, calculate the force that the train engine should apply to maintain the motion at a constant velocity (4 marks)

- **d**) (i) A body moving with a constant speed in a uniform circular path is said to be accelerating. Explain (2 marks)
 - (ii) A bus travelling at 80m/s is negotiating a curve. Calculate the force exerted on a 60kg person leaning on the inner wall of the bus 50m from the centre of the curve. (2 marks)
- e) (i) Show that for two resistors, R1 and R2 connected in parallel, the effective resistance R is given by: $R = \frac{R_1 R_2}{R_1 + R_2}$
 - (ii) The figure below shows a circuit diagram of resistors connected to a 24v battery of negligible internal resistance

Determine the potential difference across the 3Ω resistor

- **f)** Define the following terms:
 - (i) Amplitude
 - (ii) Wavelength

a) (i) What is an electric field?

g) A radiowave has a frequence of 3mHz and travels with a velocity of 3.0 x 10⁸m/s. What is its wavelength (2 marks)

Question Two

(ii) Given that the electric force between two charges is given by:

(3 marks)

(3 marks)

(1 mark) (1 mark)

$$F = \frac{1}{4\pi\varepsilon_o} \frac{Q_1 Q_2}{r^2}$$

. Show that the electric field between the test charge, Q1 and the point charge Q_2 is given by:

$$E = \frac{1}{4\pi\varepsilon_o} \frac{Q_1}{r^2}$$

hence find the electric field of a particle of charge 1.26 x 10⁻¹⁷C at a radius of 6.2 x 10⁻¹⁵m (6 marks)

- (iii) What is the magnitude of the electric field, E such that an electron placed in the field, would experience an electrical force equal to its weight? (3 marks)
- b) (i) In figure 2 below, the energy stored in C4 is 27J. Calculate the total energy stored in the system (7 marks)

Figure 2

(ii) State TWO factors affecting the capacitance of a capacitor (2 marks)

Question Three

- a) (i) Differentiate between elastic and inelastic collisions
 - (ii) Two balls A and B are involved in a collision. If B is initially at rest while A was initially moving to the right when it collides with B then both stick and more off with a velocity of 2m/s to the right. Calculate the initial speed of A if its mass is half that of B (5 marks)
- b) A body of mass 5kg is attached to the hook of a spring balance hanging from the roof of a lift. What is the reading on spring balance when the lift is:
 - (i) Ascending at an acceleration of 0.6m/s^2 ? (2 marks) (ii) Descending at an acceleration of 0.5m/s^2 (2 marks) Ascending at a constant velocity (iii) (2 marks)
- c) A block of mass 5kg is connected by a string over a frictionless pulley to a 10kg block that is sliding on a frictionless table as shown:

(3 marks)

(i) Draw a free body diagram for each mass

	(ii) Determine the acceleration of the system	(4 marks)
Question Four		
a)	(i) Define electromotive force	(1 marks)
	(ii) State the Ohm's law	(2 marks)
	(iii) A rectangular carbon block has dimensions 1.0cm x 1.0cm x 50cm. What is th measured between the two square ends. The resistivity of carbon at 20°C is 5 x	e resistance x $10^{-5}\Omega$ m
b)	(i) A current of 0.2A exists in 10 ohms resistor for 2 minutes. Find the number of electrons that	
,	passes through the cross-section of the resistor in this time	(2 marks)
	(ii) At what temperature would the resistance of a copper conductor be double its The temperature of coefficient for copper is 0.0039°C ⁻¹	resistance at O°C? (3 marks)
c)	tell drives a current of 2.0A through a 0.6 Ω resistor. When the same cell is connected to a 0.9 Ω is tor, the current flow is 1.5A. Find the interval resistance and the e.m.f of the cell	
		(4 marks)
d)	The figure 3 below shows four resistors and source voltage of 6V with interval res	istance of 0.2 Ω

- (i) Find the effective resistance of the circuit
- (ii) Calculate the current through the 2 $\Omega\,$ resistance

Question Five

a) Arrange the following electromagnetic waves in order of increasing frequency (2 marks) Radiowaves, x-rays, visible light, microwaves

(3 marks) (3 marks)

(2 marks)

 $y = 20\sin\left(40t - 20x\right)$

- b) The equation represents a plane wave travelling in the positive x-axis direction, y being the displacement of the particle at a point x. Find:
 - (i) The frequency of the wave
 - (ii) The wavelength of the wave
 - (iii) The speed of the wave
- c) (i) Define the term radioactivity
 - (i) The half-life of a certain radioactive element is 16 years. What fraction of the element will be remaining after 48 years (3 marks)
- d) (i) State TWO factors that affects the magnitude of induced e.m.f (2 marks)
 - (ii) A flat coil of a wire with 50 turns and a cross-sectional area of 50 cm^2 is placed in a magnetic B = 0.45T

field with its plane perpendicular to the magnetic field . If the field is changing at the rate of 0.04T/S, find the magnitude of the induced e.m.f at the terminals of the coil **(5 marks)**

(6 marks)

(2 marks)