

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MARINE REOURCE MANAGEMENT

APS 4109: FUNDAMENTALS OF PHYSICS

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2014
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FOUR questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) (i) Differentiate between fundamental and derived quantities. Give an example of each and the corresponding units.
(ii) Find by dimensional analysis an expression for electric potential.
b) A kitten of mass 0.6 kg leaps at 30° to the horizontal out of a toy truck of mass 1.2 kg causing it to move over the horizontal ground at $4 \mathrm{~m} / \mathrm{s}$. At what speed did the kitten leap?
c) (i) State Columb's Law
(ii) Figure 1 shows three charges, A, B and P in a line. The charge at A is positive, that at B is
negative and that at P is positive. The values are as shown. Calculate the force on the change at P

$$
\left(1 / 4 \pi \varepsilon_{o}=9 \times 10^{9} \mathrm{Nm}^{2}\right)
$$

due to A and B .

$$
1 \times 10^{-9} \mathrm{C}
$$

d) Show that the expression for changing a capacitor through a resistor is given by:

$$
Q=Q o\left(1-e^{-t / R C}\right)
$$

where the symbols have their usual meaning.
(5 marks)
e) A stone of mass 0.6 kg attached to a string of length 0.5 m is whirled in a horizontal circle at a constant speed. If the maximum tension in the string is 30 N before its breaks, calculate:
(i) The maximum speed of the stone
(3 marks)
(ii) The maximum no. of revolutions per second it can make

$$
y=10 \sin \left(200 \pi t-\frac{\pi}{0.17} x\right)
$$

e) Consider a ware represented by

Find:
(i) The speed of the ware
(3 marks)
(ii) The period of the ware
(2 marks)

Question Two

a) A ball A of mass 0.4 kg moving with velocity $5 \mathrm{~m} / \mathrm{s}$ collides head on with ball B of mass 0.2 kg moving with velocity $2 \mathrm{~m} / \mathrm{s}$. After collision, A moves with velocity $6 \mathrm{~m} / \mathrm{s}$
(i) Show that the collision obeys the law of conservation of momentum.
(ii) Is the momentum elastic or inelastic? Prove.
b) A body of mass 5 kg is pulled up a plane inclined at an angle of 30° to the horizontal by a force of 40 N acting parallel to the plane. If the frictional force between the plane and the body is 10 N , find the acceleration of the body. ($\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
c) A ball is thrown vertically upwards at $10 \mathrm{~m} / \mathrm{s}$ from a bridge which is 15 m above the river.
(i) What is the speed of the stone as it hits the river?
(3 marks)
(ii) With what speed would it hit the river if it were thrown downwards at $10 \mathrm{~m} / \mathrm{s}\left(\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(2 marks)

Question Three

a) A car of mass $1.2 \times 10^{3} \mathrm{~kg}$ moves 300 m up a road which is inclined to the horizontal at an angle

$$
\alpha=\frac{1}{15}
$$

where
By how much does the potential energy increase? (Take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(1 mark)
b) (i) Define critical angle.
(ii) What are the conditions necessary for total internal reflection?
(iii) Briefly describe THREE properties of wave nature of light.
(iv) State the laws of refraction.
c) Find the angle of refraction:
(i) When a ray of light travels from air to glass at a an angle of 40°
(ii) When a ray travels from glass to air at an angle of 20° (refractive index of glass with respect to air = 1.5)
(3 marks)

Question Four

a) (i) Two capacitors of capacitances 4 and 8 are charged to potential of 3 V and 6 V respectively.
These two charged capacitors are then connected in parallel. Find the charge across each of the
capacitors now.
(ii) In the figure 2 the energy stored in C4 is 27J. Calculate the total energy stored in the system.
(8 marks)
b) Calculate the electrical conductivity of the material of a conductor of length 3 m , area of cross-section $0.02 \mathrm{~mm}^{2}$ and having a resistance of 2
(2 marks)
Ω
c) In the circuit shown in figure 3, the current in the 4 resistor is 1.2 A . Determine the potential difference between b and c.
\square

Question Five

a) Show that the potential V at a distance r from a point charge Q in a medium of permittivity is given by:

$$
V=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q}{r}
$$

(6 marks)
b) Find the potential at the centre of a 1 m square having changes $1 \mathrm{Q},-2 \mathrm{Q}, 3 \mathrm{Q}$ and 2 Q at its corners. $\left(Q=1 \times 10^{-8} \mathrm{C} \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2}\right)$

(4 marks)

c) ABCD is a square of 4 cm side charges of $16 \times 10^{-9},-16 \times 10^{-9}$ and $32 \times 10^{-9} \mathrm{C}$ are placed at the points

$$
\left(1 / 4 \pi \varepsilon_{o}=9 \times 10^{9} \text { units }\right)
$$

A, C and D respectively. Find the intensity of the electric field at B
(6 marks)
d) At certain instant, a piece of radioactive material contains 10^{12} atoms. The half-life of the material is 30 days. What time will elapse before 10^{4} atoms remain?
(4 marks)

