

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

UNIVERSITY EXAMINATION FOR:

BACHELOR OF SCIENCE IN MARINE REOURCE MANAGEMENT

APS 4109: FUNDAMENTALS OF PHYSICS

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
 - Scientific Calculator

This paper consist of **FOUR** questions Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

Question One (Compulsory)

- a) (i) Differentiate between fundamental and derived quantities. Give an example of each and the corresponding units.
 (2 marks)
 - (ii) Find by dimensional analysis an expression for electric potential. (3 marks)
- b) A kitten of mass 0.6kg leaps at 30° to the horizontal out of a toy truck of mass 1.2kg causing it to move over the horizontal ground at 4m/s. At what speed did the kitten leap? (4 marks)
- **c)** (i) State Columb's Law

(ii) Figure 1 shows three charges, A, B and P in a line. The charge at A is positive, that at B is

(1 mark)

.

negative and that at P is positive. The values are as shown. Calculate the force on the change at P

$$\frac{1}{4}\pi\varepsilon_{\rm o} = 9 \times 10^9 \, Nm^2$$

due to A and B.

1 x 10⁻⁹C

d) Show that the expression for changing a capacitor through a resistor is given by:

$$Q = Qo\left(1 - e^{-t/_{RC}}\right)$$

where the symbols have their usual meaning.

(5 marks)

(3 marks)

(2 marks)

- e) A stone of mass 0.6kg attached to a string of length 0.5m is whirled in a horizontal circle at a constant speed. If the maximum tension in the string is 30N before its breaks, calculate:
 - The maximum speed of the stone (i)
 - The maximum no. of revolutions per second it can make (ii)

$$y = 10\sin\left(200\pi t - \frac{\pi}{0.17}x\right)$$

- **e)** Consider a ware represented by Find:
 - The speed of the ware (i)
 - The period of the ware (ii)

Question Two

- a) A ball A of mass 0.4kg moving with velocity 5m/s collides head on with ball B of mass 0.2kg moving with velocity 2m/s. After collision, A moves with velocity 6m/s
 - Show that the collision obeys the law of conservation of momentum. (5 marks) (i) (5 marks)
 - (ii) Is the momentum elastic or inelastic? Prove.
- **b**) A body of mass 5kg is pulled up a plane inclined at an angle of 30° to the horizontal by a force of 40N acting parallel to the plane. If the frictional force between the plane and the body is 10N, find the acceleration of the body. $(g = 9.8 \text{m/s}^2)$ (5 marks)
- c) A ball is thrown vertically upwards at 10m/s from a bridge which is 15m above the river. (3 marks)
 - (i) What is the speed of the stone as it hits the river?
 - (ii) With what speed would it hit the river if it were thrown downwards at 10m/s (g = $9.8m/s^2$)

Question Three

© 2014 – Technical University of Mombasa

(2 marks)

(3 marks) (2 marks)

- a) A car of mass 1.2 x 10³ kg moves 300m up a road which is inclined to the horizontal at an angle $\alpha = \frac{1}{15}$
 - By how much does the potential energy increase? (Take $g = 9.8 \text{m/s}^2$) where (1 mark)

b)	(i) Define critical angle.(ii) What are the conditions necessary for total internal reflection?	(1 mark) (2 marks)
	(iii) Briefly describe THREE properties of wave nature of light.	(6 marks)
	(iv) State the laws of refraction.	(2 marks)
c)	Find the angle of refraction:	

- When a ray of light travels from air to glass at a an angle of 40° (i)
- (3 marks) (ii) When a ray travels from glass to air at an angle of 20° (refractive index of glass with respect to air = 1.5) (3 marks)

Question Four

- μF μF **a)** (i) Two capacitors of capacitances 4 and 8 are charged to potential of 3V and 6V respectively. These two charged capacitors are then connected in parallel. Find the charge across each of the capacitors now. (5 marks)
 - (ii) In the figure 2 the energy stored in C4 is 27J. Calculate the total energy stored in the system. (8 marks)
- **b**) Calculate the electrical conductivity of the material of a conductor of length 3m, area of cross-section Ω 0.02mm² and having a resistance of 2 (2 marks)
 - Ω
- c) In the circuit shown in figure 3, the current in the 4 resistor is 1.2A. Determine the potential difference between b and c. (5 marks)

α

Question Five

a) Show that the potential V at a distance r from a point charge Q in a medium of permittivity is given

by:

$$V = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r}$$

(6 marks)

b) Find the potential at the centre of a 1m square having changes 1Q, – 2Q, 3Q and 2Q at its corners. $\left(Q = 1 \times 10^{-8} C \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 Nm^2\right)$

(4 marks)

c) ABCD is a square of 4cm side charges of 16 x 10⁻⁹, -16x 10⁻⁹ and 32 x 10⁻⁹C are placed at the points $\begin{pmatrix} 1/\\ 4\pi\varepsilon_o = 9 \times 10^9 \text{ units} \end{pmatrix}$

A, C and D respectively. Find the intensity of the electric field at B

(6 marks)

d) At certain instant, a piece of radioactive material contains 10¹² atoms. The half-life of the material is 30 days. What time will elapse before 10⁴ atoms remain? (4 marks)