
 TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS

AMA 1050: FUNDAMENTALS OF MATHEMATICS
END OF SEMESTER EXAMINATION
SERIES: DECEMBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions

Maximum marks for each part of a question are as shown
This paper consists of FOUR printed pages

Question One (Compulsory)

a) Solve the following simultaneous equation:

$$
\begin{aligned}
& y-2 x=0 \\
& x^{2}+y^{2}-2 x-3 y=-3
\end{aligned}
$$

b) Find the value of x

$$
\begin{aligned}
& 3^{2 x+5}=17 \\
& A=\left(\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right) \quad B=\left(\begin{array}{cc}
2 & -3 \\
-1 & 2
\end{array}\right)
\end{aligned}
$$

c) Given that and find the value of $A B$ hence or otherwise solve the equation:

$$
\begin{equation*}
2 x-3 y=5 \quad \text { and } \quad 2 y=-3+x \tag{3marks}
\end{equation*}
$$

d) Convert:
(i) $(11100111)_{2}$ to hexadecimal (A3D9) ${ }_{16}$
(ii) to binary
marks)
$(177.523)_{10}$
(iii) to octal 3 d.p
e) (i) Differentiate between a sequence and a series.
(ii) The $3^{\text {rd }}$ term of a G.P is 9 and the $6^{\text {th }}$ term is 243 . Find the first term and the common ratio.
(3 marks)
f) Solve for if $\theta \cos ^{2} \theta+3 \cos \theta=3$ and $0 \leq \theta \leq 360^{\circ}$
(4 marks)
g) (i) The blood groups of 200 people is distributed as follows: 50 have type A, 65, type B, 70 are of 0 group and 15 are type AB . If a person from this group is selected at random, what is the probability that this person has blood group 0
(ii) Draw a pie chart to represent the 4 blood groups above.

Question Two

a) Derive the cosine formulae
b) A triangle XYZ is such that $\mathrm{x}=13.4 \mathrm{~cm} \mathrm{z}=5 \mathrm{~cm}$ and $<=\mathrm{XYZ}=57.7 \mathrm{o}$. Solve the triangle.

$$
\begin{gathered}
y=2 \cos \theta \quad y=\sin 1 / 2 \theta \\
\text { and }
\end{gathered}
$$

c) Complete the table below for the trigonometric function

2 marks)

θ 0 30 60 90 120 150 180 210 240 270 300 330 360 $y=\sin 1 / 2 \theta$ 0 $y=2 \cos \theta$ 2
(i) Using the table below the graph of $y=\sin 1 / 2 \theta$ and $y=2 \cos \theta$

(scale: 1 cm rep 30° on x -axis and 2 cm rep 1 unit on y axis)

$$
\sin 1 / 2 \theta-2 \cos \theta=0
$$

(ii) Use your curve to find solution to the equation

$$
y=2 \cos \theta
$$

$y=2 \cos \theta$
(iii) State amplitude of curve

$$
y=\sin 1 / 2 \theta
$$

(iv) State period of curve

Question Three

$$
(3 n+5)
$$

a) The nth term of sequence is given by:
(i) Write down the first 6 terms of the sequence
(ii) Find the sum of the first 18 terms of the series

$$
S n=1 / 2\left(13 n+3 n^{2}\right)
$$

(iii) Show that the sum of n terms is given by
(iv) Determine the least value of n for which
b) A ball is allowed to drop from a height of 3 m onto a horizontal ground. It rebounds to of its previous height. Find to the nearest metres the total distance the ball will have travelled when it hits the ground for the $8^{\text {th }}$ time.
(3 marks)
c) Two arithmetic series are such that their common differences are 9 and 3 respectively. If their first terms are 2 and 5 respectively. Find the number of terms of each series that would give a common sum.
(7 marks)

Question Four

a) (i) What is statistics
(1 mark)
(ii) State THREE method of collecting data
(iv) At a police check, the speed in km / h of the first 50 vehicles were recorded as shown below:

Speed	No. of Vehicles
$10-19$	3
$20-29$	1
$30-39$	2
$40-49$	5
$50-59$	6
$60-69$	11
$70-79$	9
$80-89$	8
$90-99$	3
$100-109$	2

(i) Draw a histogram for the data
(4 marks)
(ii) On the same diagram, draw a frequency polygon
b) (i) Differentiate between an independent event and a mutually exclusive event.
(2 marks)
(ii) A family has 2 children (not twins) what is the probability that the younger child is a girl given that at least one of the children is a girl (assume that boys and girls are equally liked to be born)
(3 marks)
c) Ten percent of transistors manufactured by a company are defective. If three transistors are chosen at random. Find the probability (using a tree diagram) that:
(i) 1 will be defective
(ii) 2 will be defective

Question Five

a) Differentiate between bits and bytes.
b) Name the FOUR number systems
c) Convert 11010.01_{2} to decimal
d) Convert ADC16 to Binary
e) Convert 98.125_{10} to octal to 1 dp

$$
(\sqrt{p}+\sqrt{q})^{2}=p+q+2 \sqrt{p q}
$$

f) Show that

$$
p=\left(\begin{array}{cc}
a & 2 a \\
a-1 & a+1
\end{array}\right) .
$$

g) Given is a singular matrix find the two possible values of a
h) Solve for Y without using tables:

$$
2+\log _{2}^{3}+\log _{2} y=\log _{2} 5+1
$$

(3 marks)

$$
p(t)=100 e^{r t}
$$

i) Population growth rate is governed by formula where $p(t)$ is population after time t, r is rate of population growth and t is the time in years. How long does it take for the population to triple if the rate of growth is 10% p.a

