

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied & Health

Sciences

DEPARTMENT OF MATHEMATICS & PHYSICS

AMA 1050: FUNDAMENTALS OF MATHEMATICS

END OF SEMESTER EXAMINATION SERIES: DECEMBER 2013 TIME ALLOWED: 2 HOURS

 Instructions to Candidates:

 You should have the following for this examination

 Mathematical tables

 Scientific Calculator

This paper consist of **FIVE** questions Answer question **ONE (COMPULSORY)** and any other **TWO** questions

© 2013 - Technical University of Mombasa

Maximum marks for each part of a question are as shown This paper consists of **FOUR** printed pages

Question One (Compulsory)

a) Solve the following simultaneous equation:

$$y - 2x = 0$$

$$x^{2} + y^{2} - 2x - 3y = -3$$

(4 marks)

(3 marks)

(3 marks)

b) Find the value of x

 $3^{2x+5} = 17$

$$A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$

- c) Given that and find the value of AB hence or otherwise solve the equation: 2x-3y=5 and 2y=-3+x
- d) Convert:
 - (i) $(11100111)_2$ to hexadecimal $(A3D9)_{16}$ (2 marks)

 (ii) to binary
 (2 marks)

 $(177.523)_{10}$ (2 marks)

 (iii) to octal 3 d.p
 (2 marks)
- e) (i) Differentiate between a sequence and a series. (2 marks)
 - (ii) The 3rd term of a G.P is 9 and the 6th term is 243. Find the first term and the common ratio. **(3 marks)**

$$\theta \cos^2 \theta + 3\cos \theta = 3$$
 $0 \le \theta \le 360^\circ$
Solve for if and

- g) (i) The blood groups of 200 people is distributed as follows: 50 have type A, 65, type B, 70 are of 0 group and 15 are type AB. If a person from this group is selected at random, what is the probability that this person has blood group 0 (2 marks)
 - (ii) Draw a pie chart to represent the 4 blood groups above. (3 marks)

Question Two

f)

a) Derive the cosine formulae (3 marks)
b) A triangle XYZ is such that x = 13.4cm z = 5cm and <=XYZ = 57.70. Solve the triangle.

Page 2

(7 marks)

$$y = 2\cos\theta$$
 $y = \sin\frac{1}{2}\theta$
and

c) Complete the table below for the trigonometric function

2 marks)

θ		0	30	60	90	120	150	180	210	240	270	300	330	360
$y = \sin \theta$	$\frac{1}{2}\theta$	0												
<i>y</i> = 2	$\cos heta$	2												
				_1		y = s	in $\frac{1}{2}\theta$	v =	$= 2\cos\theta$	 7				
(i)	Using	the ta	ble belo	ow the	graph o		/ _	and	- 20030		same a	ixes		
	(coolor	1	man 200	0	wie and	Jam vo	n 1		wia)			(5 ma	rks)	
	(scale:	ICIII .	rep 50°	on x-a		2cm re	-		$(-2\cos)$	A = 0				
(ii)	Use vo	our cu	rve to f	ind sol	ution to	o the ea		<u>/2</u>	2003	0 - 0		(1 ma	rk)	
(11)	Use your curve to find solution to the equation $y = 2\cos\theta$						(1 110							
(iii)	State amplitude of curve							(1 ma	rk)					
	-				$\sin \frac{1}{2}$	9							. .	
(iv)	State period of curve							(1 mark)						
iestion	Three													
					(ז	n + 5)								
The n	h term o	of seq	uence i	s given	``	n 13)								
(i)						e seque						(2 ma		
(ii)	Find th	ie sun	n of the	first 1	8 terms	of the		√_(13n ·	$\perp 3n^2$			(2 ma	rks)	
(iii)	Show	that th	no sum	of n tor	me is c	(ivon hy	'	2 2	т эн ј			(2 ma	rke)	
(III)	Show that the sum of n terms is given by $Sn > 445$						(2 1118	1 K5)						
(iv)	Detern	nine tl	he least	value	of n fo	r which						(4 ma	rks)	
													3/4	
A ball	is allo	wed t	o dron	from a	a heigh	t of 3m	1 onto a	a horizo	ontal gr	ound. 1	(t rebou	inds to		its
	us heig	ht. Fir												

- (3 marks)
- c) Two arithmetic series are such that their common differences are 9 and 3 respectively. If their first terms are 2 and 5 respectively. Find the number of terms of each series that would give a common sum.
 (7 marks)

Question Four

the ground for the 8th time.

a) (i) What is statistics(ii) State THREE method of collecting data	(1 mark) (3 marks)
© 2013 – Technical University of Mombasa	Page 3

(iv) A	At a police check,	the speed in km/	h of the first 50 veh	hicles were recorded	as shown below:
--------	--------------------	------------------	-----------------------	----------------------	-----------------

Speed	No. of Vehicles
10 - 19	3
20 – 29	1
30 - 39	2
40 - 49	5
50 - 59	6
60 - 69	11
70 - 79	9
80 - 89	8
90 - 99	3
100 - 109	2

(i)	Draw a histogram for the data	(4 marks)
(ii)	On the same diagram, draw a frequency polygon	(2 marks)

- **b)** (i) Differentiate between an independent event and a mutually exclusive event. (2 marks)
 - (ii) A family has 2 children (not twins) what is the probability that the younger child is a girl given that at least one of the children is a girl (assume that boys and girls are equally liked to be born)

```
(3 marks)
```

c) Ten percent of transistors manufactured by a company are defective. If three transistors are chosen at random. Find the probability (using a tree diagram) that:

(i) 1 will be defective(ii) 2 will be defective	(5 marks)
Question Five	
a) Differentiate between bits and bytes.	(2 marks)
b) Name the FOUR number systems	(2 marks)
c) Convert 11010.01 ₂ to decimal	(2 marks)
d) Convert ADC16 to Binary	(2 marks)
e) Convert 98.125 ₁₀ to octal to 1 dp	(2 marks)
$\left(\sqrt{p} + \sqrt{q}\right)^2 = p + q + 2\sqrt{pq}$ f) Show that	(2 marks)

- $p = \begin{pmatrix} a & 2a \\ a-1 & a+1 \end{pmatrix}$ **g)** Given is a singular matrix find the two possible values of a (3 marks)
- **h)** Solve for Y without using tables:

$$2 + \log_2^3 + \log_2 y = \log_2 5 + 1$$

(3 marks)

$$p(t) = 100e^{rt}$$

i) Population growth rate is governed by formula where p(t) is population after time t, r is rate of population growth and t is the time in years. How long does it take for the population to triple if the rate of growth is 10% p.a (2 marks)