TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING
 UNIVERSITY EXAMINATION FOR DECREE IN:
 BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE 14M)

ECE 2203: FLUID MECHANICS I
END OF SEMESTER EXAMINATION
SERIES: APRIL 2015
TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Pocket Calculator

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions Maximum marks for each part of a question are as shown
Use neat, large and well labeled diagrams where required
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms as used in fluid mechanics:
(i) Mass density
(ii) specific density
(iii) Specific gravity marks)
(iv)Specific volume
(2 marks)
(v) Viscosity
b) Using a well labeled diagram show the forces on a liquid droplets
c) (i) Define pressure
(ii) State the hydrostatic law
d) Using a well labeled diagram, state the mechanical gauges that are used to measure pressure
(6 marks)
e) A force of 900 N is applied to the smaller cylinder of a hydraulic jack. The diameter of the smaller piston is 5 mm while that of the larger piston is 15 mm . Determine the load W which can be lifted on the larger piston if:
(i) The piston are at the same level
(ii) The larger piston is 0.8 m below the smaller piston

The liquid in the jack is water of specific weight $9810 \mathrm{~N} / \mathrm{m}^{3}$
(7 marks)

Question Two

a) (i) A U-tube differential manometer is connected to two pipes A and B as shown below. Pipe A contains a liquid of sp.gr 1.5 while pipe B contains a liquid of sp.gr 0.9. The pressures at A and B are $98.1 \mathrm{KN} / \mathrm{m}^{2}$ and $176.58 \mathrm{KN} / \mathrm{m}^{2}$. Determine the difference in mercury level in the differential manometer
(10 marks)
x
(ii) Differentiate between total pressure and centre of pressure and hence state Pascal's Law for pressure at a point
(6 marks)
(iii) A block of wood 4 m long x 2 m wide x 1 m deep is floating horizontally in water. If the density of wood is $700 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the volume of water displaced and the position of centre of buoyancy
(4 marks)

Question Three

a) State and briefly explain the conditions of equilibrium of a floating body. Use illustrations appropriately 1-a-swering and hence define "equilibrium"
(8 marks)
b) A cylinder 360 mm long, 80 mm , In diameter has its base 10 mm thick and of specific gravity 7 . The remaining part is of specific gravity 0.7 . Determine if it can float vertically in water
(12 marks)

Question Four

a) Using a well labeled diagram define the types of the flow lines
(12 marks)
b) The diameters of a pipe at entrance and exit sections are 100 mm and 150 mm respectively. If the velocity of water at the pipe entrance is $5 \mathrm{~mm} / \mathrm{s}$, determine:
(i) The discharge at the entrance
(ii) The velocity at the exit
(8 marks)

Question Five

a) A conical pipe diverges uniformly from 100 to 200 mm in diameter over a length of 1 m . Determine the local and convective accelerations at the mid-section assuming:
(i) A constant flow rate of $0.1 \mathrm{~m}^{3} / \mathrm{s}$
(ii) The rate of flow varies uniformly from $0.1-0.2 \mathrm{~m}^{3} / \mathrm{s}$ in 5 seconds at 2 sec
b) Differentiate between:
(i) Laminar and turbulent flows
(ii) Steady and unsteady flow

