

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

UNIVERSITY EXAMINATION FOR: BACHELOR OF SCIENCE IN CIVIL ENGINEERING (BSCE - Y2 S2)

ECE 2212: FLUID MECHANICS II

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

Answer booklet

Scientific Calculator

This paper consists of **FIVE** questions. Answer question **ONE (COMPULSORY)** and any other **TWO** questions All questions carry equal marks Maximum marks for each part of a question are as shown This paper consists of **THREE** printed pages

Question One (COMPULSORY)

a) Given the following whole circle bearing (WCB) of three sides of a triangle as:

Side **WCB** AB 93° 24' 22" 31° 12' 16" BC 239° 58' 35" CA Determine the internal angles of the triangle.

b) The following co-ordinates of M and N were provided as follows: Coordinates Northings (m) Eastings (m) (5 marks)

Page1

Ν	959.29	209.42
Ν	502.39	129.63

Using BOWDITCH method, complete the table below:

Std	Bearing	Distanc	Calcı	ılated	Adjus	tme	Adjuste	ed	Final
		e			nt				Coordinates
			ΔE	ΔN	δE	δN	ΔE	ΔN	
MB	356° 19' 06"	110.41							
BC	19° 55' 00"	120.41							
CD	24° 32' 30"	150.22							
DN	350° 22' 30"	98.16							

c) The following angles were adjusted for triangle ABC which were provided as:

 $\phi_A = 75^\circ 04' 25''$ $\phi_B = 42^\circ 35' 47''$ $\phi_C = 62^\circ 19' 48''$

The datum co-ordinates of A and B were

N(m)	E(m)
A: +643649.19	+409577.46
B: +641 668.40	+412 600.36

Using the first principle, derive the coordinates of C from points A and B.	(10 marks)
---	------------

d) Discuss any TWO methods employed during a traverse adjustment (5 marks)

Question Two

- a) Explain the TWO basic methods used in angle adjustments in a triangular scheme. (4 marks)
- **b)** The field abstractions of figure 1 below shows the observed angles of a braced quadrilateral PQRS. Using the equal shift method, calculate the adjusted values of the angles.

figure 1.0 Braced Quadrilateral

Angle	Observed value
1	31° 20' 50"
2	53° 10' 45"
3	56° 44' 38"
4	38° 43' 39"
5	41° 53' 49"
6	42° 37' 47"
7	54° 54' 56"

(16 marks)

Question Three

a) Define tacheometry.	a)	Define tacheom	etry.
------------------------	----	----------------	-------

8

(3 marks)

- b) Using a sketch, derive the expression for the horizontal distance, H, given $\begin{array}{cc} \beta & \alpha \\ \text{as angles of depression and differences in level L between points A and B.} & (6 marks) \end{array}$
- **c)** A tacheometer has a multiplying constant of 100 and an additional constant 1. When set up for use, the trunion axis had a reduced set up for use, the trunion axis had a reduced level of 15.2m and when sighted a vertically held leveling staff, the horizontal centre line read 1.8m and the lower and upper stadia lines 1.4m and 2.3m respectively. If the angle of elevation of the instrument was 9°, calculate:
 - (i) Horizontal distance (H) of the staff from the instrument. (3 marks)(ii) The reduced level of the ground at the staff position. (3 marks)
- d) Using a sketch, differentiate between face left observation (FL) and face right observation (FR) in a theodilite.(5 marks)

Question Four

The field abstract for a triangulation scheme to establish a small construction site had the following observations.

Angle	Observed value
1	26° 10' 48"
2	27° 37' 16"
3	35° 46' 10"
4	32° 57' 52"
5	28° 23' 12"
6	29° 04' 37"
7	126° 15' 59"
8	111° 32' 32"
9	122° 32' 02"
r	

Abstract for centre point triangle

W

Given the following stations F and B below adjust the angles:

N(m)	E(m)	
F +250.00	+719.37	
A +447.15	+250.00	(20 marks)

Question Five

- a) The coordinates of S.A and L were provided as NS = 1200.55m, E3 = 1310.22m, NA = 960m, EA = 1530.45m, NL =580.82m, EL = 1240.22m respectively. Determine the coordinates of B by $(\alpha) \qquad (\sigma)$ intersection method given the angles of S, A and L as BSA = 85° 40' 55"; SAB = 55° 45' 54" $(\sigma) \qquad (\beta)$ BAL = 41° 42' 50" and ALB = 70° 10' 03" (6 marks)
- b) An open traverse was run from A to E as shown below, determine its partial coordinates.

(14 marks)