TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSICS
UNIVERSITY EXAMINATION FOR DEGREE OF:
BACHELOR OF SCIENCE MATHEMATICS \& COMPUTER SCIENCE (BMCS)

AMA 4326: FLUID MECHANICS II

END OF SEMESTER EXAMINATION
 SERIES: APRIL 2015
 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Mathematical tables
- Scientific Calculator

This paper consist of FIVE questions
Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

a) Define the following terms:
(i) Incompressible flow
(ii) Equipotential line

$$
w=z^{2}
$$

b) Discuss the flow whose complex potential function is given by
c) If there is a line source of strength-m at a point Z and a line source of equal strength at the mirror image of z_{1} at the line $\mathrm{x}=0$. Prove that there is no fluid motion across the mirror $\mathrm{x}=0$

$$
\begin{equation*}
\psi=A\left(x^{2}-y^{2}\right) \tag{6marks}
\end{equation*}
$$

d) Show whether the function represents a possible irrotational flow
e) Briefly describe the following standard comformal transformations:
(i) Inversion
(ii) Enlargement

$$
\frac{U}{U \max }=1-\left(\frac{r}{R}\right)^{n}
$$

f) The velocity distribution in a pipe is given by where Umax is the maximum velocity at the centre of the pipe, U is the velocity at a distance r from the centre and R is the pipe radius. Obtain an expression for mean velocity in terms of Umax and n
(5 marks)

$$
\phi=x(2 y-1)
$$

g) The velocity potential for a two-dimensional flow, is . At the point $\mathrm{P}(4,5)$ determine:
(i) The velocity
(4 marks)
(ii) The value of the stream function
(4 marks)

Question Two

$$
w=\phi+i \psi
$$

a) Prove that is an analytic function
(4 marks)

$$
U=4 a x\left(x^{2}-3 y^{2}\right) \quad V=4 a y\left(3 x^{2}-y^{2}\right)
$$

b) Given that and examine whether these velocity components represent a physically possible 2 dimensional flow. if so whether the flow is rotational or irrotational

$$
\phi=x^{2}-y^{2}
$$

c) For a 2 dimensional flow the velocity function is given by the expression
(i) Determine velocity components in x and y directions
(ii) Show that the velocity components satisfy the conditions of flow continuity and irrorationality,
(iii) Determine stream function and the flow rate between the streamlines $(2,0)$ and $(2,2)$

marks)

(iv) Show that the streamlines and potential lines intersect orthogonally at the point $(2,2)$
(2 marks)

Question Three

a) In a two dimensional flow the velocity components are $\mathrm{U}=\mathrm{Cy}$ (where C is a constant and $\mathrm{V}=0$. Find

$$
x^{2}+y^{2}-2 \alpha y=0 \quad \alpha
$$

the circulation about the circle situated in the flow if is the radius of the circle
b) Suppose that a liquid is in the region of the positive side of x - axis with rigid boundary $y=0$ and there is a source of strength $-m$ at $(0, a)$ and an equal sink at $(0, b)$. If the pressure on the negative side of the boundary is the same as the pressure at infinity. Show that if the fluid satisfies the non-slip condition on the boundary . Then the resultant pressure on the boundary is given by:

$$
P=\frac{1}{2} \rho \int_{-\infty}^{\infty} \frac{4 m^{2} x^{2}\left(b^{2}-a^{2}\right)}{\left(x^{2}+a^{2}\right)^{2}\left(x^{2}+b^{2}\right)^{2}} d x
$$

(10 marks)
c) Two parallel plates kept 100 mm apart have laminar flow of oil between them with a maximum velocity of $1.5 \mathrm{~m} / \mathrm{s}$. Calculate:
(i) The discharge per metre width
(ii) The shear stress at the plates

Question Four

a) Discuss the flow due to a uniform line doublet at point O of strength along the x -axis.
per unit length if its axis is
b) Obtain the velocity profile of a plane parallel flow (coutte flow) between two plates moving at a constant velocity U_{0} but in opposite direction, the distance y is measured from a fixed point 0 and the

$$
\frac{\partial p}{\partial x} \neq 0
$$

distance between the plates is 8 mm if , obtain the skin friction on each of the plates.
(7 marks)

$$
u=\frac{-c x}{y} \quad V=C \ln x y
$$

Question Five

$$
\alpha^{o} \quad \nabla \phi=-\vec{q}
$$

a) Discuss the complex velocity potential of an inclined flow to the x-axis at an angle
b) Fluid is in laminar motion between two parallel plates under the action of motion of one of the plates and also under the presence of a pressure gradient in such a way that the net forward discharge across any section is zero:
(i) Find out the point where minimum velocity occurs and its magnitude
(ii) Draw the velocity distribution graph across a section of the parallel plates
c) Write the complete Navier stokes equation of conservation of momentum and name all the terms in the equation
(3 marks)

