

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Applied \& Health

Sciences

DEPARTMENT OF MATHEMATICS \& PHYSISCS
DIPLOMA IN ELECTRICAL ENGINEERING (POWER OPTION)
DIPLOMA IN TELECOMMUNICATION ENGINEERING DIPLOMA IN INSTRUMENTATION \& CONTROL ENGINEERING

AMA 2350: ENGINEERING MATHEMATICS V
END OF SEMESTER EXAMINATION
SERIES: APRIL 2014
TIME ALLOWED: 2 HOURS

You should have the following for this examination

- Answer Booklet
- Mathematical Table
- Scientific Calculator

Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages

Question One (Compulsory)

$$
U=x^{2}-y^{2}+e^{x} \cos y+8
$$

a) Given that
(i) Show that U is harmonic

$$
f(z)=u+j v
$$

(ii) Find a function V such that is analytic.

$$
\begin{aligned}
& x_{n}=1.2345, \quad x_{n+1}=1.2447 \\
& x_{n+2}=1.3124, \quad x_{n+3}=1.3233 \\
& f\left(x_{n}\right)=12.5674, \quad f\left(x_{n+2}\right)=13.9831
\end{aligned}
$$

b) Given that

$$
\begin{aligned}
& f\left(x_{n+1}\right) \quad f\left(x_{n+3}\right) \\
& \text { and to five d.p } \\
& \\
& \quad \text { (6 marks) }
\end{aligned}
$$

c) The value of x and $f(x)$ for a given polynomial function are shown below:

x	-1.2	-0.7	-0.2	0.3	0.8	1.3	1.8
$\mathrm{f}(\mathrm{x}$	1.40	2.29	2.12	1.66	1.64	2.83	$5 . .96$
$)$	7	2	7	2	7	2	7

Apply the method of Newton-Gregory to estimate:

$$
f(-0.39)
$$

(i)

$$
f(1.68)
$$

(ii)

$$
f(x)=3 x \quad 0 \leq x \leq \pi
$$

d) Determine half-range Fourier sine series for the function

Question Two

A function $f(x)$ is defined as:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2} & -\pi \leq x<0 \\
x / 2-\frac{1}{2} & -1 / 2,0 \leq x \leq \pi
\end{array},\right.
$$

a) Sketch the function for at least three periods
b) State whether the function is odd, even or neither. Give reasons for your answer. Hence.
c) Obtain the Fourier series for the function $f(x)$

Question Three

a) Apply Newton-Raphson iterative formula to show that from the equation:

$$
\begin{aligned}
& x^{4}-x^{3}-2 x-34=0 \\
& x_{n+1}=\frac{3 x_{n}^{4}-2 x_{n}^{3}+34}{4 x_{n}^{3}-3 x_{n}^{2}-2}
\end{aligned}
$$

Hence calculate the root of the equation starting at $\mathrm{x}_{\mathrm{o}}=3$ correct to six decimal places. ($\mathbf{9}$ marks)
b) Use Newton-Gregory forward difference formula to obtain a polynomial of minimum degree that will exactly fit the data below hence or otherwise evaluate $f(10)$
(11 marks)

x	-6	-4	-2	0	2	4	6
$f(x)$	1149	189	-3	-3	-3	189	1149

Question Four

$$
f(z)=-\frac{1}{\pi} \ln z+j \quad u+j v
$$

a) Given that express $f(z)$ in the form hence show that u and v are harmonic.
(12 marks)

$$
|Z|=1 \quad W=\frac{1}{z-2}
$$

b) A circle in the z-plane is mapped onto the W-plane by w-plane.
. Determine its image in the
(8 marks)

Question Five

a) Sketch the following functions for at least three periods, stating whether .,the function is odd, even or neither. Give reason for your answer.

$$
f(x)=\left\{\begin{array}{cc}
1 & -\pi<x<0 \\
x & 0<x<\pi
\end{array}\right.
$$

(i)

$$
f(x)=x,-\pi<x<\pi
$$

(ii)

$$
f(x)=\left\{\begin{array}{cc}
-x & -\pi<x<0 \\
x & 0<x<\pi
\end{array}\right.
$$

(iii)

$$
f(x)=x^{2},-\pi<x<\pi
$$

b) Sketch the function and show that as Fourier series, the function can be expressed as:

$$
f x=x^{2}=\frac{\pi^{2}}{3}+4 \sum(-1)^{n} \frac{\cos n x}{n^{2}}
$$

