

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering & Technology

DEPARTMENT OF BUILDING & CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING (DBCE 13J/DBCE 13M)

ECV 2201: FLUID MECHANICS I

END OF SEMESTER EXAMINATION SERIES: APRIL 2014 TIME ALLOWED: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Drawing Paper
- Drawing Instruments

Thi	s paper	consists of FIVE questions. Answer any THREE questions of the FIVE questions	
Maximum marks for each part of a question are as shown			
Th	is paper	consists of THREE printed pages	
Ou	estion	One	
- L -			
a)	Define	the following::	
	(i)	Dynamic viscosity	
	(ii)	Kinematic viscosity	
	(iii)	Adhesion	
	(iv)	Cohesion	
	(v)	Surface tension	(10 marks)
b)	A liquid has a mass of 4080kg and volume $y = 0.3m^3$. Determine:		
-)	(i)	The volume of 5000kg of the liquid	
	(ii)	The weight of 0.5m3 of the liquid	
	(iii)	The mass density of the liquid	
	(iv)	The unit weight of the liquid.	(5 marks)
			````
c)	With t	ne aid of a sketch, outline the working of bourdon's pressure gauge	(5 marks)
Question Two			

a) The U-tube manometer in figure 1 measures the pressure difference between two points A and B in water. The manometer liquid is mercury. Calculate the difference of pressure between A and B. Specific gravity of mercury is 13.6 (6 marks)

Figure 1

- b) Define the following:
  - (i) Total pressure
  - (ii) Centre of pressure
- c) (i) Derive an expression for the total pressure on a horizontal surface of area "A" immersed in a

liquid of specific weight '  $\omega$  ' in terms of y .

(ii) A cylindrical tank 60cm in diameter with its axis vertical is filled to a depth of 250cm with water. Determine the total pressure at the bottom. (10 marks)

#### **Question Three**

(4 marks)

- a) Using standard notations, derive expressions for calculating the following for an immersed, inclined plane surface:-
- (i) The total pressure
  (ii) The depth of centre of pressure
  (10 marks)
  (i) The gate shown in figure 2 is a quadrant of a circle. Calculate:

  (i) The resultant pressure due to the water per metre run
  (ii) The angle at which it acts.
  Radius

**Question Four** 

- **a)** State the assumptions made when deriving Bernoulli's equation.
- **b)** Using formula, briefly explain the following as used in the energy of a flowing liquid:
  - i. Potential energy
  - ii. Kinetic energy
  - iii. Pressure energy
  - iv. Total energy
- c) A jet of water from 25mm diameter nozzle is directed vertically upwards. Assuming that the jet remains circular and neglecting any loss of energy, determine the diameter of the jet at a point 4.5m above the nozzle if the velocity the jet leaves the nozzle is 12m/s
   (7 marks)

#### **Question Five**

- **a)** Define the following:
  - (i) Turbulent flow
  - (ii) Lamind flow
  - (iii) Steady flow
  - (iv) Unsteady flow
  - (v) Non-uniform flow
- **b)** (i) Derive an expression for the force exerted by a jet of area 'a' which strikes a flat plate at an angle  $\theta$

to the normal to the plate with a velocity 'V' if the plate is moving in the direction of jet with a velocity 'U'

### (8 marks)

(5 marks)

## (10 marks)

(ii) A jet of water 22.5cm diameter impinges normally on a flat plate moving at 0.6m/s in the same direction as the jet. If the discharge is 0.14m3/s, find the force and work done per second on the plate.
 (10 marks)