

TECHNICAL UNIVERSITY OF MOMBASA Faculty of Engineering \& Technology

DEPARTMENT OF BUILDING \& CIVIL ENGINEERING DIPLOMA IN BUILDING \& CIVIL ENGINEERING (DBCE 12M)

EBC 2208: FLUID MECHANICS I
SPECIAL/SUPPLEMENTARY EXAMINATION
SERIES: OCTOBER 2013
TIME ALLOWED: 2 HOURS

Instructions to Candidates:
You should have the following for this examination Answer Booklet

This paper consists of FIVE questions.
Answer any THREE questions
Maximum marks for each part of a question are as shown
This paper consists of THREE printed pages
Question One
a) A certain oil has a specific gravity of 0.7. Determine in SI units.
(i) Its mass density
(ii) Its specific weight
(iii) The weight of 0.5 litres of the oil
(iv) The volume of 0.7 kg of the oil
(8 marks)
b) Define the following terms.
(i) Ideal fluid
(ii) Viscosity
(iii) Bulk modulus of a liquid
(iv) Capillarity
(v) Mass
(vi) Energy
(12 marks)

Question Two

a) State THREE desirable properties of a manometer liquid suitable for an "inverted U-tube manometer" (3 marks)
b) The manometer shown in figure 1 is used to measure the difference in pressure between two water pipe A and B. If the pressure head in pipe A is $2 m$ of water, determine the pressure in pipe B
(9 marks)
Figure 1
c) Given that a liquid has a density of $1.53 \times 103 \mathrm{~kg} / \mathrm{m} 3$ and that atmospheric pressure is equivalent to 750mm of mercury. Determine:
(i) The absolute pressure at a point 3m below the free surface of the liquid
(ii) The gauge pressure at a point 5 m below the free surface of the liquid.

Question Three

$$
I g=\frac{\pi d^{4}}{64}
$$

a) A hollow circular plate is immersed vertically in water as shown in figure 2. Given that
for a circle, determine:
(i) The total pressure on the plate
(10 marks)
(ii) The depth of the centre of pressure

Figure 2
b) The gate AB shown in figure 3 is a quadrant of a circular cylinder. If the length of the gate is 2 m , determine:
(i) The total pressure acting on the gate AB
(ii) The angle at which the total pressure will act
(10 marks)
Figure 3

Question Four

a) Define the following terms:
(i) Buoyancy
(ii) Centre of buoyancy
(iii) Metacentre
(iv) Metacentric height
b) With the aid of sketches, briefly describe the following conditions of equilibrium of a solid body.
(i) Stable equilibrium
(ii) Unstable equilibrium
(iii) Neutral equilibrium
c) State Archimedes principle as applied to floating bodies

Question Five

a) Using usual notations, derive Bernoullis equation for the flow of an incompressible frictionless liquid.
(14 marks)
b) A pipe is conveying water at a rate of $7200 \mathrm{~m} 3 / \mathrm{hr}$ with an average velocity of $3 \mathrm{~m} / \mathrm{s}$. Determine:
(i) The diameter of the pipe
(ii) The mass flow rate

