THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY MECHATRONICS \& ROBOTICS ENGINEERING (MRE 5)

EME 2505: DYNAMICS OF AUTOMATIC \& ROBOTICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator
- Laplace Transform tables

This paper consists of FIVE questions. Answer question ONE (COMPULSORY) and any other TWO questions
Maximum marks for each part of a question are clearly shown.
This paper consists of FIVE printed pages

SECTION A (COMPULSORY)

Question 1

a) Explain the difference between an open and closed loop system and give an example for each marks)
b) State the SIX basic mathematical modeling control signals
c) Define the following
i. Disturbance
ii. Control system
iii. Feedback path
iv. Actuating signal
v. Feedfoward path
vi. Disturbance
d) State and explain the THREE types of Mathematical models
e) State and explain the THREE types of control systems in Engineering modeling giving an example for each

SECTION B (Answer any TWO questions from this section-20 marks each)

Question 2

a) In the mechanical system below, the initial conditions are $y(0)=O$, and $y^{(1)}(0)=2$. The

$$
\frac{Y(s)}{F(s)}
$$

constants are $\mathrm{M}=1, \mathrm{~B}=3, \mathrm{~K}=2$ and $\mathrm{f}(\mathrm{t})=\mathrm{u}(\mathrm{t})$. Determine the transfer function $\mathrm{H}(\mathrm{s})=$
(10 marks)
b) Calculate the capacitor voltage (Vc) for the circuit shown below if the initial conditions at t $=0$ are $\mathrm{V}(\mathrm{o})$ and $(\mathrm{l})^{(-1)}=0$

Question 3

$$
\left(\frac{V_{o}(s)}{V_{t}(s)}\right)
$$

a) Define the transfer function for the operational amplifier circuit below. (10 marks)
b) Determine the $\mathrm{Y}(\mathrm{s})$ at $\mathrm{t}=0$ for the system below

Question 4

a) Find the state equations for the system below
(10 marks)
$\left(\frac{V_{c}(t)}{V_{o}(t)}\right)$
b) Derive the transfer function
of the circuit below

Question 5

a) Determine the state equations of the circuit below.
(10 marks)
b) Determine the differential equations for the system below at initial conditions $M=1, K=2$, B $=3$ at $t=3$ seconds

