

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY MECHATRONICS & ROBOTICS ENGINEERING (MRE 5)

EME 2505: DYNAMICS OF AUTOMATIC & ROBOTICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer booklet
- Scientific Calculator
- Laplace Transform tables

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are clearly shown. This paper consists of **FIVE** printed pages

SECTION A (COMPULSORY)

Question 1

a)	Explain the difference between an open and closed loop system and give an example for each (4		
	mark	5)	(
b)	State	the SIX basic mathematical modeling control signals	(6 marks)
c)	Define the following		
	i.	Disturbance	
	ii.	Control system	
	iii.	Feedback path	
	iv.	Actuating signal	
	v.	Feedfoward path	
	vi.	Disturbance	(6 marks)
d)	d) State and explain the THREE types of Mathematical models		(8 marks)

e) State and explain the **THREE** types of control systems in Engineering modeling giving an example for each (8 marks)

SECTION B (Answer any TWO questions from this section - 20 marks each)

Question 2

a) In the mechanical system below, the initial conditions are y(o) = O, and $y^{(1)}(o)=2$. The

 $\frac{Y(s)}{F(s)}$

constants are M = 1, B = 3, K = 2 and f(t) = u(t). Determine the transfer function H(s) = (10 marks)

b) Calculate the capacitor voltage (Vc) for the circuit shown below if the initial conditions at t =0 are V(o) and $(l)^{(-1)}=0$ (10 marks)

Question 3

$$\left(\frac{V_O(s)}{V_t(s)}\right)$$

a) Define the transfer function

for the operational amplifier circuit below. (10 marks)

b) Determine the Y(s) at t = 0 for the system below

(10 marks)

© 2011 – The Mombasa Polytechnic University College

Question 4

a) Find the state equations for the system below

(10 marks)

b) Derive the transfer function

of the circuit below

(10 marks)

Question 5

a) Determine the state equations of the circuit below.

(10 marks)

b) Determine the differential equations for the system below at initial conditions M=1, K =2, B =3 at t = 3 seconds (10 marks)