

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING (DMEN)

EME 2308 FLUID MECHANICS II

END OF SEMESTER EXAMINATIONS

YEAR 3 SEMESTER 2

SERIES: DECEMBER, 2013

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. You should have the following for this examination:
 - Answer Booklet
 - Scientific Calculator
 - Drawing Instruments
- 2. This paper consists of **FIVE** Questions.
- 3. Answer **ANY THREE** Questions.
- 4. All Questions carry equal marks.
- 5. This paper consists of THREE printed pages.

Question ONE

(a) With reference to viscous flow the velocity of a fluid in a circular pipe can be given by:

$$\upsilon = \frac{1}{4\mu} \frac{\partial P}{\partial x} \left[R^2 - r^2 \right]$$

v =Where: $\mu =$ Use Velocity of fluid at any radius r $\mu =$ Dynamic viscosity $\frac{\partial P}{\partial x} =$ Pressure gradient

From the above expression deduce expressions for:

- (i) Average velocity
- (ii) The shear stress

(14 marks)

- (b) A fluid of viscosity 0.5Ns/m² and specific gravity 1.2 is flowing through a circular pipe of diameter 100mm. The maximum shear stress at the wall is given as 147.15N/m². Determine:
 - (i) Pressure gradient
 - (ii) Average velocity
 - (iii) Reynods number of the flow

(6 marks)

(20 marks)

Question TWO

The flow rate per unit time 'Q' drained by an orifice of diameter 'd' from a circular tank of diameter $\rho' \qquad \mu'$ 'D', when the head is 'h' depends on the density and viscosity of the fluid and acceleration $g' \qquad \rho$, d and μ due to gravity by choosing as reaping variable determine:

- (i) Number of dimensionless groups
- (ii) An equation relating/correlating Q with other variables

Question THREE

(a) Briefly describe **THREE** sources of losses in centrifugal pumps. (6 marks)

© 2013 Technical University of Mombasa

(b) The following data refer to a typical centrifugal pump:

Impeller diameter external	=	500mm
Width at exit	=	25mm
Pump speed	=	1200rpm
Suction head	=	6m
Delivery head	=	40m
Friction in suction side	=	2m
Friction in delivery side	=	8m
Blade angle at inlet	=	30°
Manometric off	=	80%
Overall off	=	75%

From the above data:

Determine:

- (i) Power required to drive pump
- (ii) Pressure at suction and delivery side of the pump

(14 marks)

Question FOUR

The drag on a ship on sea water with $2135m^2$ wetted areas is to be estimated a model 1/33 scale towed at 1.3m/s through fresh water had a total drag resistance of 15.3N. The skin resistance of the

 $F = CU_m^{1.9}$, $14.33N/m^2$ model follows the law and was at 3m/s. The ship skin resistance per unit $F = 5.76U_s^{1.85}(N/m^2)$.

area follows the law

Determine; (stating any formulae used).

- (i) Corresponding speed of the ship
- (ii) Power needed to proper the ship

Take density of sea water = 1025kg/m^3

(20 marks)

Question FIVE

The resistance due to surface friction of a flat plate $1m^2$ in area when moving in its own plane in water was found to be 34.5N at 3m/s and 124.5N at 6m/s. Determine the power absorbed by a thin disc 500mm in diameter having a similar surface when rotated in water (both sides wet) at 1500rev/min. The disc is attached to a shaft of 25mm dia which extends through it. (Proove any formulae used). (20 marks)

© 2013 Technical University of Mombasa