TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
DEPARTMENT OF MECHANICAL AND AUTOMOTIVE
ENGINEERING
DIPLOMA IN MECHANICAL ENGINEERING (DMEN)

EME 2308
FLUID MECHANICS II

END OF SEMESTER EXAMINATIONS

YEAR 3 SEMESTER 2
SERIES: DECEMBER, 2013
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

1. You should have the following for this examination:

- Answer Booklet
- Scientific Calculator
- Drawing Instruments

2. This paper consists of FIVE Questions.
3. Answer ANY THREE Questions.
4. All Questions carry equal marks.
5. This paper consists of THREE printed pages.

Question ONE
(a) With reference to viscous flow the velocity of a fluid in a circular pipe can be given by:
$v=\frac{1}{4 \mu} \frac{\partial P}{\partial x}\left[R^{2}-r^{2}\right]$

Where: $\begin{gathered}v=\quad \text { Velocity of fluid at any radius } \mathrm{r} \\ \mu=\quad \text { Dynamic viscosity } \\ \partial P / \partial x= \\ \text { Pressure gradient }\end{gathered}$

From the above expression deduce expressions for:
(i) Average velocity
(ii) The shear stress
(14 marks)
(b) A fluid of viscosity $0.5 \mathrm{Ns} / \mathrm{m}^{2}$ and specific gravity 1.2 is flowing through a circular pipe of diameter 100 mm . The maximum shear stress at the wall is given as $147.15 \mathrm{~N} / \mathrm{m}^{2}$. Determine:
(i) Pressure gradient
(ii) Average velocity
(iii) Reynods number of the flow

Question TWO

The flow rate per unit time ' Q ' drained by an orifice of diameter ' d ' from a circular tank of diameter ' ρ ' ' μ ' ' D ', when the head is ' h ' depends on the density and viscosity of the fluid and acceleration $' g ' \quad \rho, d$ and μ
due to gravity by choosing as reaping variable determine:
(i) Number of dimensionless groups
(ii) An equation relating/correlating Q with other variables

Question THREE

(a) Briefly describe THREE sources of losses in centrifugal pumps.
(b) The following data refer to a typical centrifugal pump:

Impeller diameter external	$=$	500 mm
Width at exit	$=$	25 mm
Pump speed	$=$	1200 rpm
Suction head	$=$	6 m
Delivery head	$=$	2 m
Friction in suction side	$=$	8 m
Friction in delivery side	$=$	30°
Blade angle at inlet	$=$	80%
Manometric off	$=$	75%
Overall off		

From the above data:

Determine:
(i) Power required to drive pump
(ii) Pressure at suction and delivery side of the pump

Question FOUR

The drag on a ship on sea water with $2135 \mathrm{~m}^{2}$ wetted areas is to be estimated a model $1 / 33$ scale towed at $1.3 \mathrm{~m} / \mathrm{s}$ through fresh water had a total drag resistance of 15.3 N . The skin resistance of the

$$
F=C U_{m}^{1.9}, \quad 14.33 \mathrm{~N} / \mathrm{m}^{2}
$$

model follows the law and was at $3 \mathrm{~m} / \mathrm{s}$. The ship skin resistance per unit

$$
F=5.76 U_{s}^{1.85}\left(\mathrm{~N} / \mathrm{m}^{2}\right) .
$$

area follows the law Determine; (stating any formulae used).
(i) Corresponding speed of the ship
(ii) Power needed to proper the ship

Take density of sea water $=1025 \mathrm{~kg} / \mathrm{m}^{3}$
(20 marks)

Question FIVE

The resistance due to surface friction of a flat plate $1 \mathrm{~m}^{2}$ in area when moving in its own plane in water was found to be 34.5 N at $3 \mathrm{~m} / \mathrm{s}$ and 124.5 N at $6 \mathrm{~m} / \mathrm{s}$. Determine the power absorbed by a thin disc 500 mm in diameter having a similar surface when rotated in water (both sides wet) at $1500 \mathrm{rev} / \mathrm{min}$. The disc is attached to a shaft of 25 mm dia which extends through it. (Proove any formulae used).

