

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)

Faculty of Engineering and Technology

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY MECHANICAL & ROBOTICS ENGINEERING (DMRE 5) INSTRUMENTATION & CONTROL ENGINEERING (DICE 5)

EME 2308: PNEUMATIC & HYDRAULICS

SPECIAL/SUPPLEMENTARY EXAMINATION

SERIES: OCTOBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

• Answer booklet

This paper consists of **FIVE** questions. Answer question **ONE** (**COMPULSORY**) and any other **TWO** questions

Maximum marks for each part of a question are clearly shown. This paper consists of **THREE** printed pages

SECTION A (COMPULSORY)

Question 1

a)	State FIVE advantages of Hydraulic power area pneumatic power	(5 marks)
b)	Explain the formation i Turbulence	
	ii. Eddies	(4 marks)
c)	Calculate the absolute pressure of a 76cm head of mercury given its relative de and the atmosphere pressure as 101.3KN	ensity as 936 (5 marks)
d)	Sketch a simple oil barometer showing an atmosphere pressure of 78.4 N/m ² g relative density of oil is 0.8 (take g = 9.81 m/s ²)	iven the (3 marks)
e)	State the FIVE basic components that make up a hydraulic or pneumatic circu	iit (5 marks)
f)	Explain the following: i. Viscosity ii. Streamline flow iii. Hydrostatics	
	iv. Fluid	(4 marks)
g)	From basic principles, derive the Bernoulli's equation	(4 marks)
SECTION B (Answer any TWO questions from this section - 20 marks each)		

Question 2

- a) Water flows at a rate of 9000kg/min between an inlet of 0.9m diameter and an outlet of 0.45m diameter. The inlet is 1.3m vertically above outlet. Given the density of water as 1000kg/m³. Calculate the pressure difference between the Inlet and the Outlet. (10 marks)
- b) Design and sketch a pneumatic circuit for a car wash consisting of the following components
 - i. Non Return value
 - ii. Pressure relief value
 - iii. Compressor
 - iv. Filter
 - v. Pressure regulator
 - vi. Pressure gauge
 - vii. Globe value
 - viii. Reservoir

Question 3

$$\frac{p}{\rho g} = \frac{V^2}{2}$$

a) From the conservation of energy principle, show that;

(10 marks)

Where

 $p - static pressure \rho$

- Density G = gravitational acceleration V = Velocity

b) An oxifice of 50mm diameter is at the base of a tank filled with oil upto 6m depth and at a vertical height of 30m from the ground. If the relative density of the oil is 0.8 and the pressure loss is a head of 3.6m.

Calculate

- i. The volumetric and the mass flow rates of discharge of the oil through the orifice
- ii. The power the oil develops as it hits the ground
- iii. The power loss in KW.

Question 4

- a) Design and sketch a hydraulic circuit for a hydraulic powered conveyor system having the following components
 - i. Filter
 - ii. Reservoir
 - iii. Pressure relief value
 - iv. Pressure regulator
 - v. Pressure gauge.
 - vi. 3 position, 4 way directional control value
 - vii. 5 Double acting cylinder
 - viii. Pump

(12 marks)

(7 marks)

(13 marks)

b) The inlet and outlet pressure of a fluid flowing in a horizontal pipe are 126KN/m2 and 140KN/m2 respectively. The pipe tapers from 100m diameter at the inlet to 150mm diameter at the outlet. If the fluid has a relative density of 0.8, calculate the mass and volumetric flow rate at the outlet. (8 marks)

Question 5

- a) The jet of a fluid from a 10mm diameter orifice falls a vertical distance of 33cm and a horizontal distance of 1.5m away from a tank filled with oil up to a depth of 7.8m. If the mass flow rate is 13.6kg/min and the relative density of the oil is 0.76, calculate:
 - i. The co-efficient of discharge
 - ii. The co-efficient of velocity
 - iii. The co-efficient of contraction
 - iv. The power of the jet
- b) Explain the working principle and sketch the graphic symbol for the following components.
 i. Strainer/filter
 - ii. Pressure relief value
 - iii. Pressure regulator
 - iv. Double acting cylinder

(12 marks)

(8 marks)