THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
(A constituent College of JKUAT)
FACULTY OF ENGINEERING AND TECHNOLOGY
DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING
DIPLOMA IN MECHANICAL ENGINEERING (PRODUCTION)
DIPLOMA IN MECHANICAL ENGINEERING (PLANT)
DIPLOMA IN MECHANICAL ENGINEERING (AUTOMOTIVE)

EME 2302: FLUID MECHANICS I

YEAR III SEMESTER I
SPECIAL/SUPPLEMENTARY EXAMINATION
MAY 2012 SERIES
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

You should have the following for this examination:

- Answer booklet
- Scientific Calculator
- Drawing Instruments

This paper consists of FIVE questions
Attempt any THREE questions. Maximum marks for each part of a question are as shown.
a) Derive from first principles the loss of head due to friction, and show that
$h f=\frac{4 f L V^{2}}{2 g d}$
Where: $\quad \begin{array}{lll}f & = & \text { Coefficient of friction } \\ L & = & \text { Length of pipe } \\ V & = & \text { Velocity of fluid } \\ d & & \text { decimals of pipe }\end{array}$
(13marks)
b) Calculate the loss of head due to friction in a pipe 300 mm long and 150 m diameter when the discharge is $2.7 \mathrm{~m}^{3} / \mathrm{min}$ and due resistance coefficient $\quad=0.01$ (7marks)

Question TWO

a) Show that the loss of head which occurs when flow passes through sudden contraction in a pipeline is given by:-

$$
\left(\frac{1}{C c}-1\right)^{2} \frac{V_{2}{ }^{2}}{2 g}
$$

Loss of head (
Where $\quad \mathrm{Cc}$ is the coefficient of contracts

$$
V_{2}{ }^{2}
$$

is the velocity after sudden contraction.
(10marks)
b) A pipe carrying $0.06 \mathrm{~m}^{3} / \mathrm{sec}$ suddenly contracts from 200 mm to 150 mm diameter. Assuming that a vena contractor is formed in the smaller pipe. Calculate the coefficient of contraction of the pressure head at a point upstream of the construction is 0.655 m greater than at a point just downstream of the Vena contractor. (10marks)

Question THREE

Water is discharged from the atmosphere through a pipe 39 m long. There is a sharp entrance to the pipe and the diameter is 50 mm from the entrance. The pipe then enlarges suddenly to

75 mm in diameter for the remainder of the length. Taking into account the loss of need al country and al enlargement:-

Calculate the difference of level between the surface of the research and due pipe exit which will maintain a flow of $2.8 \mathrm{dm}^{3} / \mathrm{sec}$.
f
Take as 0.0048 for the 50 mm pipe and 0.0058 for the 75 mm pipe.
(20marks)

Question FOUR

Two reser ${ }^{\text {voirs }}$ have a difference of level of 6 m and are connected by a pipe line which consists of a single 600 mm diameter pipe 3000 m long feeding a junction from which two pipers each of 300 mm diam and 3000 m long, lead in parallel to the lower reservoir. If

```
f
    =0.01 .
```

(i) Sketch the arrangement
(ii) Calculate the total discharge from first principles.
(20marks)

Question FIVE

a) Show that the condition of maximum power transmitted by a pipe line is given by:$h f=\frac{1}{3} H$
$h f$
Where is the head lost in friction and H is the head al Intel.
(10marks)
b) Calculate the maximum power available at the far end of a pipeline. 4.8 Km long and 200 mm in diameter when water at $6900 \mathrm{KN} / \mathrm{m} 2$ pressure is fed in at the rear end. Take

$$
f=0.007
$$

the coefficient of friction
(10marks)

