THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

FACULTY OF ENGINEERING \&TEHNOLOGY

Department of Mechanical \& Automotive Engineering
 Diploma in Mechanical Engineering (Plant DPL 3P)
 Diploma in Mechanical Engineering (Production DPR 3)
 Diploma in Automotive Engineering (DAE 3P)

Second Year Semester One SUP Exam

EME 2203
MECHANICS OF MACHINES I

OCTOBER SERIES
Time 2 Hours

You should have the following for this examination:

Answer booklet
Scientific calculator
SMP mathematical tables
This paper consists of FIVE Questions, answer Question ONE (Compulsory) and any other TWO Questions.

Question ONE (Compulsory)

(a) State the:
(I) Conservation of Momentum principle
(II) Conservation of Energy Principle.
(2 Marks)
(b) A plane weighing 100tonnes and cruising at a speed of $1.2 \mathrm{~km} / \mathrm{h}$ collides head on with a 40 tonne helicopter travelling at $4 \mathrm{~km} / \mathrm{h}$ in mid-air.
(I) Their velocities immediately after colliding
(II) The impulse developed in the collision.
(7 Marks)
(c) Define the following, stating their SI units:
(I) Impulse
(II) Momentum
(III) Mass moment of Inertia
(IV) Centripetal acceleration
(V) Velocity
(d) A stone in thrown vertically upwards from rest. It accelerates constantly at $11.5 \mathrm{~m} / \mathrm{s}^{2}$ for 5.8 seconds and the begins to decelerate due to the effect of gravitation acceleration. Calculate the maximum height it attains just when it stops and begins to fall down.

Question TWO

(a) (I) Determine the second Moment of Area of the cross-sectional Area shown below by using the parallel axis theorem by using the parallel axis theorem (Dimensions in cm).
(10 Marks)
(b) The figure below shows a piston cylinder arrangement:

If the crank is rotating with an angular velocity of 3600rpm anticlockwise, calculate:
(i) The linear velocity of the piston
(ii) The angular velocity of the connecting rod
(iii) The Linear velocity of the handle locating at the mid-point of the connecting rod.
(10 Marks)

Question THREE

(a) In a wind tunnel experiment, the total resistances to a plane model is given by the expression $\left(132+0.6 \mathrm{~V}+0.1 \mathrm{~V}^{2}\right)$ Newtons, where V is the velocity of the wind in $\mathrm{m} / \mathrm{s}^{2}$. If the wind speed is set at $100 \mathrm{~km} / \mathrm{h}$ against a 1.2 tonne model, calculate:

Calculate:
(i) The total resistance
(ii) The acceleration attained by the model.
(8 Marks)
(b) (I) From first principles, show that;

Impluse $=$ Change of momentum
(4 Marks)
(II) A mass of 0.5 kg is whirled in a horizontal circle by a string of $1.5 \mathrm{KN} / \mathrm{m}$ stiffness at a speed of 360 rpm . If the original length of the string is 150 mm , calculate:
(i) The radius of the rotation
(ii) The string extension

Question FOUR

(a) Determine the area moment of inertia of the cross-section below (Dimensions in mm).
(b) From first principles show that the second moment of area for:

$$
J=\frac{\pi D^{4}}{32}
$$

(I) A solid shaft;

$$
J=\frac{\pi}{32}\left(D^{4}-d^{4}\right)
$$

(II) A Hollow shaft;

Where: D - Outside diameter
d - Inside diameter

(8 Marks)

Question FIVE

(a) A 0.32 tonne bomb launched at $5 \mathrm{~km} / \mathrm{s}$ explodes and separates into two parts. One part of 0.2 tonnes experiences a thrust of 1.5 kN in the line of flight and it's speed reduces by $15 \mathrm{~m} / \mathrm{s}$ during the explosion. Calculate:
(I) The duration of the thrust period.
(II) The final speeds of the first and second parts.
(b) A stone is thrown over a wall as illustrated below:

If the intial acceleration is $32.2 \mathrm{~m} / \mathrm{s}$ and $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Calculate:
(i) The iniat velocity, if the time from $\mathrm{A}-\mathrm{B}$ is 20 secs.
(ii) The distance travelled from B-C in radians.
(iii) The total time for the whole motion.

