TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
DEPARTMENT OF MECHANICAL AND AUTOMOTIVE
ENGINEERING
DIPLOMA IN MECHANICAL ENGINEERING (DMEN)

EME 2202
THERMODYNAMICS I

END OF SEMESTER EXAMINATIONS
YEAR 2 SEMESTER I
SERIES: DECEMBER, 2013
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

1. You should have the following for this examination:

- Answer Booklet
- Scientific Calculator

2. This paper consists of FIVE Questions.
3. Answer ANY THREE Questions.
4. All Questions carry equal marks.
5. This paper consists of FOUR printed pages.

Question ONE
(a) Show proof that:

$$
\gamma=1.67
$$

(i) For an ideal monoatomic gas,

(4 marks)

$\gamma=1.40$
(ii) For an ideal diatomic gas,
(4 marks)
(b) The compression ratio of a diesel engine is 15 to 1 ; this means that air in the cylinders is $1 / 15$
compressed to of its initial volume. If the initial pressure is $1.0 \times 10^{5} \mathrm{~Pa}$ and the initial
temperature is $27^{\circ} \mathrm{C}$:
(i) Find the final pressure and the temperature after compression
(ii) How much work does the gas do during the compression if the initial volume of the cylinder is 1L.
(This is a case of adiabatic compression, assume air to be a diatomic ideal gas, $\gamma=$ 1.40).

Question TWO

(a) When ice melts at $0^{\circ} \mathrm{C}$, its volume decreases. Is the internal energy change greater than, less than, or equal to the heat added? Show proof for your answer.
(b) A metal cylinder with rigid walls contains 2.5 mol of oxygen gas. The gas is cooled until its pressure decreases to 30% of its original value.
(i) Draw a p-V diagram for this process.
(ii) Calculate the work done by the gas
(c) Three moles of an ideal gas are taken around the cycle abc shown below:

For this gas, $\mathrm{Cp}=29.1 \mathrm{~J} / \mathrm{mol} . \mathrm{K}$. Process ac is a constant pressure process, process ba is at constant volume and process cb is adiabatic. The temperatures of the gas in states a, c and b are $T_{a}=300 \mathrm{~K}, \mathrm{~T}_{\mathrm{c}}=492 \mathrm{~K}$ and $\mathrm{T}_{\mathrm{b}}=600 \mathrm{~K}$. Calculate the total work for the cycle. (11 marks)

Question THREE

(a) Briefly explain the meaning of the following terms:
(i) Saturation temperature
(ii) Saturation pressure
(iii) saturated vapour
(iv) Superheated vapour
(v) Saturated liquid
(10 marks)
(b) A mass of 200 g of saturated liquid water is completely vapourised at a constant pressure of 100 kPa . Given that:
$\mathrm{V}_{\mathrm{g}}=1.6941 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{V}_{\mathrm{f}}=0.001043 \mathrm{~m}^{3} / \mathrm{kg}$
$\mathrm{h}_{\mathrm{fg}}=2257.5 \mathrm{~kJ} / \mathrm{kg}$

Determine:
(i) The volume change.
(3 marks)
(ii) The amount of energy transferred to the water.
(c) Discuss the relevance of "Steam quality", x .

Question FOUR

(a) Starting with the general energy equation, derive the simplified nozzle equation, stating all the assumptions that are made.
(10 marks)
(b) Steam enters a nozzle with negligible upstream velocity at 1 MPa and $240^{\circ} \mathrm{C}$ and leaves at 0.6 MPa and $200^{\circ} \mathrm{C}$. The initial enthalpy is $2920 \mathrm{~kJ} / \mathrm{kg}$ and the final enthalpy is $2840 \mathrm{~kJ} / \mathrm{kg}$. Calculate the steam velocity leaving the nozzle.

Question FIVE

(a) Starting with the general energy equation, derive the simplified turbine equation, starting all the assumptions that are made.
(b) Steam passes through a turbine under the inlet (1) and exhaust (2) conditions given below:

$$
\begin{aligned}
& \mathrm{P}_{1}=8 \mathrm{MPa} \\
& \mathrm{~T}_{1}=500^{\circ} \mathrm{C} \\
& \mathrm{u}_{1}=3064 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{~V}_{1}=0.04175 \mathrm{~m}^{3} / \mathrm{kg} \\
& \mathrm{P}_{2}=0.8 \mathrm{MPa} \\
& \mathrm{~T}_{2}=250^{\circ} \mathrm{C} \\
& \mathrm{u}_{1}=2716 \mathrm{~kJ} / \mathrm{kg} \\
& \mathrm{v}_{2}=0.2931 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

If the steam flow rate is $250 \mathrm{~kg} / \mathrm{s}$, calculate the power output from the turbine.

