

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING

EME 2118 : MECHANICAL SCIENCE II

YEAR I SEMESTER II

SUPPLEMENTARY/SPECIAL EXAMINATIONS

SERIES: MAY, 2011

TIME: 2 HOURS

Instructions to Candidates:

- 1. You should have the following for this examination:
 - Answer booklet
 - Drawing instruments
 - Calculator
- 2. This paper consists of **FIVE** Questions.
- 3. Question ONE is COMPULSORY.
- 4. Answer any other **TWO** Questions.

Question ONE

friction.

Ouestion THREE

The extension for each material. (i) (ii) The load W. (10 Marks) (b) An engine exerts a force of 35KN on a train of mass 240 tonne and draws it up a slope of 1 in 200 against a resistance of 60N/tonne. Find: The acceleration of the train. (i) The braking force required on the return journey to prevent the acceleration (ii) exceeding 0.01m/s^2 . (10 Marks) A flywheel of mass 145kg and radius of gyration of 480mm is acted upon by (c) a torque of 50Nm which increases the flywheel speed from 300rev/min to 680rev/min. There is a constant resisting torque of 5Nm. Determine: The time taken by the flywheel when accelerating. (i) (ii) The number of revolutions made while accelerating. The change in kinetic energy of the fly wheel. (iii) (10 Marks) **Question TWO** State any **TWO** advantages and **TWO** disadvantages of friction. (4 Marks) (a) A body of mass 1.2tonne is pulled at a constant velocity of 0.15m/s up a (b) track inclined at 30° to the horizontal by a force 'P' inclined at 20° to and above the track. If the coefficient of friction is 0.25. Calculate: (i) The value of the force 'P'. (ii) The power required. (11 Marks) A shaft of weight 'w' is supported in a plain journal bearing of diameter'd'. (c) The shaft is rotating with a constant angular velocity ' ω ' and the coefficient of friction is ' μ '. Derive an expression for the power lost in the bearing due to

A bar 5m long is made up of two materials, joined in series. The first is $1.7m \log 1000$ of brass material and $7.5 cm^2$ in cross section. The second is steel and is $6.0 cm^2$ in cross section. The bar is in tension under a load of WN, and the total elongation

is 0.12cm. Taking $E_s = 200 \text{GN/m}^2$ and $E_b = 80 \text{GN/m}^2$, determine:

(a)

A simple machine used for lifting was under test and gave the following results.

(5 Marks)

Load W (N)	250	500	750	1000	1500	2500
Effort P(N)	42.5	62.5	82.5	105	142.5	220

The velocity ratio of the machine is 18.

- (i) Plot a graph showing the relation between effort and load.
- (ii) Determine law of the machine.
- (iii) Determine the effort and efficiency for a load of 2KN.
- (iv) Find the maximum efficiency.
- (v) Find the effort to overcome machine friction when the load is 2KN.

(20 Marks)

Question FOUR

- (a) A car of mass 1.2 tonne moves up an incline of 1 in 8. The resistance to motion is constant at 500N. Using the energy Method, calculate the effort required to move the car from rest to a speed of 45km/h in 30m. (10 Marks)
- (b) A shaft together with its load has a mass of 250kg and a radius of gyration of 500mm. It is running freely at 650rev/min. If the shaft is connected by a clutch to another shaft at rest whose moment of inertia is 35kgm², calculate:
 - (i) The final speed of rotation of the two shafts after slipping has ceased.
 - (ii) The loss of kinetic energy due to engagement.

(10 Marks)

Question FIVE

- (a) (i) Using a sketch explain the operation of a Burdon gauge used in pressure measurements.
 - (ii) Show that for a liquid column:

Р	=	hpg		
Where	e:	Р	=	pressure (gauge)
		h	=	height of liquid column
		g	=	acceleration due to gravity
		ρ	=	density of the liquid

(10 Marks)

- (b) A tank contains oil of specific gravity 0.8 to a depth of 2.8m. It discharges through a 20mm diameter straight pipe at a point 8m below the bottom of the tank. Taking specific weight of water as 9.8KN/m², Calculate:
 - (i) The discharge in litre/s and tonnes/h.

(ii) The oil pressure at a point half way along the pipe.

(10 Marks)