

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING (PLANT OPTION)

EME 2106 MECHANICAL ENGINEERING SCIENCE II

END OF SEMESTER EXAMINATIONS

YEAR 1 SEMESTER 2

SERIES: DECEMBER, 2013

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. You should have the following for this examination:
 - Answer Booklet
 - Scientific Calculator
- 2. This paper consists of **FIVE** Questions.
- 3. Answer **ANY THREE** Questions.
- 4. All Questions carry equal marks.

This paper consists of FOUR printed pages.

Question ONE

© 2013 Technical University of Mombasa

(a) Define a fluid. Give any **THREE** differences between a liquid and a gas. (4 marks)

A rectangular tank 68m long and 15m wide is filled with oil to a depth of 4m. What is (b) (i) $\left(\rho_{oil} = 800 kg/m^3\right)$ the total thrust of the oil on the bottom of the tank?

(ii) What is the gauge pressure on a submarine 75m below the surface in sea water of density 1.00g/cm³.

(iii) In the figure below what is the absolute pressure of the manometer shown. The $\left(\rho_{mercurv} = 13600 kg/m^3\right)$

manometric fluid is mercury and G = 30mm.

(16 marks)

Question TWO

- (a) (i) Define friction force. (2 marks)
 - (ii) Give any **THREE** laws of friction.
- An inclined plane is of length 4.5m and height 2.5m. A body of weight 10N is on the plane (b) and a force of 3N acting along the plane just prevents the body from sliding down the plane.
 - (i) Find the coefficient of limiting friction between the plane and the weight.
 - (ii) Calculate the least force parallel to the plane required to pull the weight up the plane.

(12 marks)

(3 marks)

Question THREE

(a) Define the following terms as applied to heat energy:

(i) (I)	Specific	heat capacity
---------	----------	---------------

(II) Specific latent heat of fusion

(ii) (I) State the **THREE** temperature scale

(II) State THREE modes of heat transfer

(8 marks)

 (b) Calculate the amount of heat energy required to convert 1.5kg of ice at 250k to 373k. Take: Specific heat capacity of water as 4.2kJ/kgk
Specific latent heat of fusion of ice as 335kJ/kg
Specific latent heat of vaporization of water as 2250kJ/kg

(12 marks)

Question FOUR

- (a) A bar 5m long is made up of two materials, joined in series. The first is 1.7m long of brass material and 7.5cm² in cross section. The second is steel and is 6.0cm² in cross section. The bar is in tension under a load of WN, and the total elongation is 0.12cm. Taking $E_s = 200$ GN/m² and $E_b = 80$ GN/m². Determine:
 - (i) The extension for each material
 - (ii) The load W.

(10 marks)

- (b) An engine exerts a force of 35KN on a train of mass 240 tonne and draws it up a slope of 1 in 200 against a resistance of 60N. Find:
 - (i) The acceleration of the train.
 - (ii) The braking force required on the return journey to prevent the acceleration exceeding 0.01 m/s^2 .

(10 marks)

Question FIVE

A simple machine used for lifting was under test and gave the following results:

Load W(N)	250	500	750	1000	1500	250
						0
Effort P(N)	42.5	62.5	82.	105	142.	220

© 2013 Technical University of Mombasa

|--|--|

The velocity ratio of the machine is 18.

- (i) Plot a graph showing the relation between effort and load.
- (ii) Determine law of the machine.
- (iii) Determine the effort and efficiency for a load of 25KN.
- (iv) Find the maximum efficiency.
- (v) Find the effort to overcome machine friction when the load is 2kN.

(20 marks)