THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE DEPARTMENT OF ELECTRICAL \& ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY
Electrical Power Engineering
Telecommunication Engineering
Automation \& Control Engineering

MECHANICAL ENGINEERING SCIENCE
 SPECIAL/SUPPLEMENTARY EXAMINATION October, 2011 Series

2 Hours

Instructions to Candidates
You should have the following for this examination:

- Answer Booklet
- Non-Programmable Calculator

Answers any THREE. All questions carry equal marks.
(a) State:
(i) The polygon of forces rule.
(ii) Two applications of balancing.
(4 Marks)
(b) Four bodies w ; x ; y and z are rigidly attached to a shaft that rotates at $10 \mathrm{rev} / \mathrm{sec}$. If masses, radii of rotation and angular displacement of the bodies are as follows:

Body	Mass (kg)	Radius (m)	Angular Displacement ($\boldsymbol{\theta}^{\circ}$)
W	4	0.15	165°
X	3	0.3	120°
Y	2	0.6	30°
Z	1	1.2	0°

Find the:
(i) Mr Products for each body.
(ii) Out-of balance force on the shaft.
(iii) Magnitude and position of the balance mass required at 0.5 m radius.
(11 Marks)
(c) A lamp 5 N in weight is suspended from a ceiling by a chain. It's filled aside by a horizontal zero till the chain makes an angle of 60° with the ceiling. Determine the tensions in the chord. (5 Marks)

QUESTION TWO

(a) A café 200 kg is moving at a speed of $10 \mathrm{~m} / \mathrm{s}$ on a rope way. If the cape is 50 m above the ground level determine the ratio of its kinetic to potential energy.
(3 Marks)
(b) A wooden block 950 N in weight is placed on an sunclined plane that makes 30° with the horizontal. If the block is moved 3 m upwards the plane; determine the work done if the plane is:-
(i) Smooth
(ii) Rough with a coefficient of friction of 0.3
(c) A lorry 4 t in mass accelerates uniformly from 40 to $70 \mathrm{~km} / \mathrm{h}$ in 10 seconds. If the tractive effort is constant during this time at 3 kN ; find the:-
(i) Average resistance in motion
(ii) Maximum tower developed
(iii) Average tower developed

QUESTION THREE

(a) State:
(i) Principle of moments
(ii) Any TWO applications of moments.
(b) A uniform rod AB 3 m long and 100 N in weight is hinged at A to rotate in the vertical plane.

If it's held horizontally by a string attached at B inclined at 60° to the horizontal; as shown in figure 3.0. Find the tension in the string.

Fig. 3.0
(c) (i) A body undergoing linear motion with an initial velocity a m / s attains a final velocity vm / s in t seconds with a uniform acceleration of a m / s. show that $V^{2}=u^{2}+2 a s$
(ii) A motorist driving a car at $80 \mathrm{~km} / \mathrm{h}$ observes traffic lights 100 m a head turning red. The lights are timed to remain red for 30 seconds before turning green. However, the motorist wishes to pass the lights without stopping to wait for it to turn green. Find the:
(a) Required uniform acceleration of the car
(b) Speed of the car as it passes the traffic lights.

QUESTION FOUR

(a) Fig. 1 shows a system of co-planar concurrent forces. Determine the magnitude and direction of the resultant force.

Fig. 4.0
Determine the magnitude and direction of the resultant force by way of:
(i) The method of components
(ii) Construction
(b) Two blocks A and B 1 kg mass each rests on a rough surface inclined at 15° with the horizontal. If the blocks are 0.5 m apart and the static friction between the surface and A and B is 0.12 and 0.3 respectively. Take the coefficient of restitution as 0.75 and calculate the:-
(i) Time at which the impact occurs.
(ii) Velocity of the blocks immediately after impact.
(a) State any FOUR:
(i) Advantages and disadvantages of friction.
(ii) Laws of any friction.
(b) A body just begins to slide down a rough plane inclined 25° to the horizontal. If the weight of the body is 50 N ; determine the parallel force to the plane required to haul it up the plane.

