)

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)
Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING DIPLOMA IN MECHANICAL ENGINEERING

EME 2108 : MECHANICAL ENGINEERING SCIENCE I

YEAR I SEMESTER I
SUPPLEMENTARY/SPECIAL EXAMINATIONS
SERIES: MAY, 2011
TIME: 2 HOURS

Instructions to Candidates:

1. You should have the following for this examination:

- Answer booklet
- Drawing instruments
- Calculator

2. This paper consists of FIVE Questions.
3. Question ONE is COMPULSORY.
4. Answer any other TWO Questions.

Question ONE

(a) A car is travelling at a uniform speed of $60 \mathrm{~km} / \mathrm{h}$. It maintains this speed for 2 mins. It is then uniformly accelerated to $100 \mathrm{~km} / \mathrm{h}$ in one minute and then immediately retarded and brought to rest after a total of 6 minutes travelling time. The braking force is uniform:
(i) Draw a velocity-time graph.
(ii) Determine distance covered while accelerating.
(iii) The distance covered while braking.
(iv) The total distance covered while braking.
(v) The total distance covered.
(11 Marks)
(b) A vehicle fitted with tyres having a running radius of 380 mm is brought to rest in a distance of 70 m from a speed of $45 \mathrm{~km} / \mathrm{h}$. Calculate:
(i) The retardation of the vehicle.
(ii) The initial angular velocity of the wheels in revs per minutes.
(iii) The angular retardation of the wheels.
(c) A car of mass 900 kg has its speed reduced from $126 \mathrm{~km} / \mathrm{h}$ to $36 \mathrm{~km} / \mathrm{h}$ in 10s by the application of brakes. Assuming the deceleration is constant. Determine:
(i) The value of the deceleration produced.
(ii) The force producing the deceleration.
(iii) The distance travelled during braking period.
(iv) The heat generated at braking surface.

Question TWO

The pin-jointed framework in figure 2 is loaded and supported as shown. Using the graphical method determine the magnitude and nature of the forces in all members.

Question THREE

(a) A projectile is aimed at a mark on the horizontal plane through the point of projection. It falls 12 m short when the angle of projection is 15°; while it overshots the mark by 24 m , when the same angle is 45°. Assuming no air resistance, determine the angle of projection to hit the mark.
(b) A particle is fired with a velocity of $8 \mathrm{~m} / \mathrm{s}$ at an elevation of 65°. Find its velocity and direction after 5 seconds.

Question FOUR

(a) Referring to fig. 1. If the combined moment of the two forces about c is zero, determine:
(i) The magnitude of the force P.
(ii) The resultant of the two forces.

Figure 1a
(13 Marks)
(b) A triangle ABC has three forces of $40 \mathrm{~N}, 50 \mathrm{~N}$ and 30 N as shown in figure 1 b . Determine the magnitude of the resultant.

Figure 1b
(7 March)

Question FIVE

(a) Define simple harmonic motion.
(b) A body of mass 12 kg moves with Shm in a straight line over a distance of 400 mm on each side of its central position. If the frequency of the motion is 2.5 Hz . Determine:
(i) The maximum acceleration of the body.
(ii) The maximum force acting on body.
(iii) The maximum velocity of the body.
(iv) The acceleration and velocity of the body at a point 150 mm from the central position.
(c) A mass of 4 kg is placed on a rough plane as shown in fig. 5. This mass is attached to a light inelastic cord passing over a light fractioness pulley and other end connected to a body of mass 2 kg hanging vertically. The cord is parallel to the plane and the frictional force opposing motion of 4 kg mass is 10 N . If the system is released from rest, calculate:
(i) The acceleration of the system.
(ii) The tension in the rope.

Figure 5

