

TECHNICAL UNIVERSITY OF MOMBASA

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN ELECTRICAL ENGINEERING (BSEE)

EME 2102 WORKSHOP PRACTICE I

END OF SEMESTER EXAMINATIONS

SERIES: DECEMBER, 2013

TIME: 2 HOURS

INSTRUCTION TO CANDIDATES

- 1. You should have the following for this examination:-
 - Answer Booklet
 - Electronic Calculator
 - Drawing Instruments
- 2. This paper consists of **FIVE** questions.
- 3. Answer Question **ONE** is **COMPULSORY** and any other **TWO** Questions.
- 4. Maximum marks for each part of Question are as shown.
- 5. This paper consists of **THREE** printed pages.

Question ONE (Compulsory)

- (a) List down **FIVE** general safety practices to be observed in the workshop. (5 marks)
- (b) With the aid of a neat sketch, show the various parts of a file used in the workshops. (8 marks)
- (c) Differentiate between the functions of the following tools used in any machine workshop:
 - (i) Centre punch
 - (ii) Crosscut chisel
 - (iii) Three square files
 - Show neat sketches for the above tools. (8 marks)
- (d) (i) Define the term marking out

(1 mark)

	(ii)	Explain any THREE reasons for marking out.	(3 marks)
	(iii)	Sketch a labeled diagram of a vernier height gauge.	(4 marks)
	(iv)	State the uses of the height gauge.	(2 marks)
(e)	Desc	ribe TWO classes of fires and the methods of distinguishing them.	(4 marks)

Question TWO

- (a) Illustrate the driving mechanism of a shaper incorporating the following:
 - (i) Crank
 - (ii) Crank Pin
 - (iii) Bull wheel
 - (iv) Ram
 - (v) Link
 - (vi) Crank pivot

		(10 marks)
(b)	Using a sketch show the table feed mechanism of a shaper.	(10 marks)

Question THREE

(a)	State FOUR operations that can be carried out on a lathe machine.	(2 marks)
(b)	Define a face plate.	(1 mark)

- (c) With the aid of sketches illustrate how the following procedures are carried out on a centre lathe:
 - (i) Turning a long taper by off-setting the tail stock
 - (ii) Turning a short taper using a formed tool
 - (iii) compound slide technique

(13 marks)

(d) List down FOUR factors that influence the choice of speed on a lathe machining a piece of work. (10 marks)

Question FOUR

(a) State **FIVE** drilling faults, their causes and their remedial actions. (10 marks)

(b) With the aid of a neat sketch, illustrate the various parts of the twist drill. (10 marks)

Question FIVE

(a) With the aid of a diagram, illustrate a cutting tool grounded to the correct geometry for machining. Label it's parts slowing both the end and front elevations of the tool.

(4 marks)

(b) In a cutting operation using the orthogonal conditions, the following details were recorded:

Cutting force	=	2000N
Feed force	=	1200N
Rake angle α	=	15°
Depth of cut, t_o	=	0.17mm
t _c	=	0.6mm

Determine the following:

- (i) The shear angle $\Phi(\text{sphi})$
- (ii) The normal shear friction force F_n
- (iii) Shear force, F_s
- (iv) Normal friction, N
- (v) Friction Force, F

(10 marks)

- (c) A certain cutting tool gave a life of 30 mins when the cutting speed was 200m/min and a life of 20min at a cutting speed of 260m/min. Determine the following using the Taylor's empirical equation of tool life.
 - (i) Constant C
 - (ii) Slope n
 - (iii) Tool life corresponding to 160m/min

(6 marks)