THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
 (A CONSTITUENT COLLEGE OF JKUAT)
 Faculty of Engineering and Technology ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT BEng. Electrical Engineering \& BSC. Electrical Engineering
 EME 2101 ENGINEERING DRAWING I
 YEAR 1 SEMESTER II EXAM
 SERIES: MARCH, 2012
 TIME: 2 HOURS
 INSTRUCTIONS TO CANDIDATES
 You should have the following for this examination
 - Answer booklet
 - Scientific calculator
 - Drawing instruments

This paper consists of FIVE questions
Question 1 is compulsory
Answer any other TWO questions.
Maximum marks per each question are shown.
This paper consists of FOUR printed pages

QUESTION 1 (COMPULSARY)

a) Construct an ellipse major diameter $=90 \mathrm{~mm}$ minor diameter $=45 \mathrm{~mm}$ using the rectangular method

(8 marks)

b) i) Two circles 30 mm and 20 mm diameter respectively have their centers 90 mm apart, for the two circles construct
I. Internal tangent
II. External tangent
(6 marks)
ii) Construct a pentagon inscribed within a circle of diameter 50 mm
(8 marks)
c) Construct the template shown in figure 4 showing all the construction details

(8 marks)

QUESTION 2

Figure 2 shows the orthographic views of a machined block. Draw the block in isometric projection. Take corner A as the lowest corner
(20 marks)

QUESTION 3

Figure 3 shows a link mechanism where crank OA rotates about a fixed center O and causes crank CB to oscillate about fixed center C, through the connecting link XABY. Plot the loci of point X and Y when;
$\mathrm{AB}=98 \mathrm{~mm}$
$\mathrm{BX}=25 \mathrm{~mm}$
$\mathrm{BC}=60 \mathrm{~mm}$
$\mathrm{AX}=20 \mathrm{~mm}$
$\mathrm{OA}=38 \mathrm{~mm}$

(20 marks)

QUESTION 4

Figure 1 below shows a machine component .draw full size the following views in first angle projection.
i. Front elevation
ii. A sectional side elevation along $\mathrm{X}-\mathrm{X}$
iii. The plan view

(20 marks)

Fig 1

QUESTION 5

Design a cam to perform the following operations in one complete revolution
$>0^{0}-90^{\circ}$ Simple harmonic motion rise of 50 mm
$>90^{\circ}-150^{\circ}$ Dwell
$>150^{\circ}-240^{\circ}$ Uniform velocity fall of 30 mm
$>210^{\circ}-270^{\circ}$ Dwell
$>270^{\circ}-360^{\circ}$ Uniform deceleration fall of 20 mm
Cam details;
(i). Shaft diameter $=20 \mathrm{~mm}$
(ii). minimum cam radius $=30 \mathrm{~mm}$
(iii). knife edge follower
(iv). rotation anticlockwise

(20 marks)

Fig 2

Fig 3

Fig 4

