TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

CERTIFICATE IN MECHANICAL ENGINEERING (PLANT OPTION)
CERTIFICATE IN MECHANICAL ENGINEERING (AUTOMOTIVE OPTION)

EME 1103
MECHANICAL SCIENCE I

END OF SEMESTER EXAMINATIONS

SERIES: DECEMBER, 2013
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

1. You should have the following for this examination:

- Answer Booklet
- Scientific Calculator
- Drawing Instruments
- Mathematics Tables

2. This paper consists of FIVE Questions.
3. Answer ANY THREE Questions.
4. All Questions have equal marks.
5. This paper consists of FOUR printed pages. Question ONE
(a) Give the basic SI units of the following qualities:
(i) Mass
(ii) Time
(iii) Velocity
(iv) Density
(b) Explain the following is standard form and in SI units:
(i) $6.7 \mathrm{~m} \Omega$
(ii) 20 kV
(iii) $3500 \mathrm{rev} / \mathrm{min}$
(c) (i) State the principle of moments.
(ii) The beam shown in Figure Q. 1 is simply supported at its ends and loaded as shown. Determine the support reactions:

Question TWO

(a) (i) Define the following as applied to Kinematics:
(I) Speed
(II) Retardation
(ii) State the THREE equations of motion linear.
(iii) State the THREE Newton's laws of linear motion.
(b) A train starts from nest and accelerates uniformly to a speed of $30 \mathrm{~km} / \mathrm{h}$ in 25 seconds. This speed is kept constant for one minute after which the brakes are applied to bring the train to rest with uniform deceleration. The total distance covered in 2 km . With aid of a velocity-time graph calculate:
(i) The acceleration
(ii) The distance covered while decelerating
(iii) The time taken in deceleration

Question THREE

(a) State the THREE equations of angular motion.
(b) The speed of a shaft increases from $300 \mathrm{rev} / \mathrm{min}$ to $360 \mathrm{rev} / \mathrm{min}$ while turning through eighteen complete revolutions. Calculate:
(i) The angular acceleration
(ii) The time taken for this change
(c) A flywheel 0.7 m in diameter is uniformly accelerated from $45 \mathrm{rev} / \mathrm{min}$ and rotates sixty times in reaching a speed of $100 \mathrm{rev} / \mathrm{min}$. Determine:
(i) The angular acceleration
(ii) The time taken to attain the speed of $100 \mathrm{rev} / \mathrm{min}$
(iii) The linear acceleration of a point on the rim

Question FOUR

(a) (i) Define force.
(ii) State the parallelogram rule of forces.
(b) Two forces of 15 N and 10 N act on a body at 80° to each other. Calculate the resultant of the two forces in magnitude and direction.
(c) Four horizontal wires are attached to the top of a post and exert the following tensions on its. 10N due North, 15 N due E, 20N due Southwest and 25 N due South East.

Calculate the magnitude of the resultant and the direction in which it acts.

Question FIVE

(a) State FOUR examples of simple machines and express the velocity ratio in each case.
(b) A pulley system consists of an upper block fitted with four pulleys and a lower block fitted with three pulleys. An effort 240 N is required to raise a body having a mass of 85 kg .

Sketch the arrangement and calculate:
(i) The velocity ratio
(ii) Mechanical advantage
(iii) the efficiency
(iv) The deal mechanical advantage

