

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

CERTIFICATE IN MECHANICAL ENGINEERING

EME 1101 MECHANICAL SCIENCE I

YEAR I SEMESTER I

SUPPLEMENTARY/SPECIAL EXAMINATIONS

SERIES: MAY, 2011

TIME: 2 HOURS

Instructions to Candidates:

- 1. You should have the following for this examination:
 - Answer booklet
 - Drawing instruments
 - Calculator
- 2. This paper consist of **FIVE** Questions.
- 3. Answer THREE Questions.
- 4. Question **ONE** is **COMPULSORY**.
- 5. Maximum marks for each part of a question are as shown.

Question ONE

- (a) Define the following terms:
 - (i) Displacement
 - (ii) Velocity
 - (iii) Acceleration

(3 Marks)

(b) A motor car accelerates from rest. The time to reach the various speeds is shown in the table below.

T(s)	0	1.1	2.5	4.4	7.0	10.	15.	24
						7	6	
Speed m/s	0	6	11	17	22	28	34	39

Draw a speed-time graph and use it to determine:

- (i) The distance travelled in first seven seconds.
- (ii) The average acceleration in the time interval 15.6 24.
- (iii) Total distance travelled (i.e. in the first 24 seconds).
- (iv) Average speed for the whole journey.

(17 Marks)

- (c) An electric train weighs 300tonne. Determine the total driving force required to accelerate it at the rate of 1.5m/s², assuming the resistance to motion is uniform amounting to 75N/tonne. (5 Marks)
- (d) An object is dropped from a helicopter and strikes the ground 12s later. Determine:
 - (i) The height of the helicopter.
 - (ii) The velocity with which the body strikes the ground.

(8 Marks)

Question TWO

- (a) State the principle of moments. (2 Marks)
- (b) A uniform beam 6m long and 40kg is supported at the paints P 1m from left hand end and Q 1½m from the other end of beam. Considering the mass of beam as a concentrated load at the centre of the beam, determine:
 - (i) The reactions at the supports when a man of 80kg stands at a point 1m in from Q.

(ii) How far past Q can the man walk before the beam overturns.

(11 Marks)

(c) Determine the centroid of the I section of beam shown in figure I.

Fig. 1

(7 Marks)

Question THREE

(a)	State the THREE Newtons laws of motion.				
(b)	A mar cage r				
	(i) (ii) (iii)	The lift is station The lift is accele The lift is accele	hary. erating up at $6m/s^2$. erating down at $6m/s^2$.	(14 Marks)	
Quest	ion FO	UR		· · · ·	
(a)	Define the following terms:				
	(i) (ii) (iii)	Stress Strain Youngs Modulus	s of elasticity	(3 Marks)	
(b) (c)	State I During points	(2 Marks)			
	1000N	Extensio	n 0.01mm		

15000N Extension 0.05mm

The original length was 56.5mm, determine the value of the Youngs modulus of elasticity.

(d) A mild steel towing bar is to be designed to carry a maximum load of 250KN with a factor of safety of 4. The tensile strength o the steel is 540MN/m² and Youngs modulus is 200GN/m². Determine:

- (i) A suitable diameter of a solid circular shaft.
- (ii) The amount of stretch, if original length is 3m.

Question FIVE

- (a) Define the following:
 - (i) Resultant force
 - (ii) Triangle of force rule
 - (iii) Polygon of force rule

(b) Determine the magnitude and direction of the resultant of the following forces acting at a point.

10N	at	0°
8N	at	120°
6N	at	225°
12N	at	300°

(c) Two forces F_1 and F_2 act at 90° to each other. If F_1 is 15N and the resultant of F_1 and F_2 is 25. Determine F_2 . (3 Marks)

(d) A 4 tonne lorry A, travelling at 18m/s runs into the back of another 6tonne lorry B travelling at 7m/s in the same direction. Find:

- (i) The momentum of each vehicle before impact.
- (ii) The final velocity of the vehicles after impact assuming vehicles remain locked together.

(5 Marks)

(10 Marks)

(5 Marks)

(3 Marks)

(10 Marks)