TECHNICAL UNIVERSITY OF MOMBASA

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
SECOND YEAR UNIVERSITY EXAMINATION FOR THE DEGREE IN BACHELOR OF SCIENCE IN ELECTRICAL \& ELECTRONIC ENGINEERING (BSEE)

EME 2211

MECHANICAL ENGINEERING PRINCIPLES
END OF SEMESTER EXAMINATIONS
SERIES: DECEMBER, 2013
TIME: 2 HOURS

INSTRUCTION TO CANDIDATES

1. You should have the following for this examination:-

- Answer Booklet
- Scientific Calculator

2. This paper consists of FIVE questions.
3. Answer Question ONE and any other TWO Questions.
4. This paper consists of FOUR printed pages.

Question ONE (Compulsory)
(a) A wooden beam ABCD of length 18 cm is simply supported at the points A and C . The beam is loaded as shown in Figure Q.1(a).

(i) Determine the reactions at the supports at points A and C .
(ii) Derive expressions (Equations) to determine the shearing forces and bending moment, on the beam.
marks)
(iii) Sketch the shearing force and bending moment diagrams of the beam. (8 marks)
(iv) Determine the position and magnitude of the maximum bending moment.
marks)
(b) An aluminum alloy of height 0.06 m and breadth 0.028 m as shown in Figure 1 (b) is bent along the planes of the longer sides. Estimate the greatest allowable bending moment if the bending stresses are not to exceed $60 \mathrm{mN} / \mathrm{m}^{2}$ in tension or compression. (10 marks)

Fig. Q.1(b)

Question TWO

(a) A horizontal cantilever of uniform section and of length L , carries a point load, w at the free end. Derive an expression for the slope and deflections and from these obtain an expression for the maximum deflection.
(12 marks)
(b) With the aid of diagrams derive the flexure equation:
$\frac{M}{I_{x}}=\frac{E}{R}=\frac{\delta}{y}$

Where: $\mathrm{M}=$ Moment
I $\quad=\quad$ Second moment of area (moment of inertia)
$\mathrm{E}=$ Youns modulus (Modulus of elasticity)
R $=$ Radius of curvature
$\delta \quad=\quad$ Stress
y $\quad=\quad$ Distance above/below the neutral axis

Question THREE

(a) State FOUR factors that determining the coefficient of fraction between the belt and the pulley.
(4 marks)
(b) If the slip between the driver and the belt is $\mathrm{S}_{1} \%$ and that between the belt and follower is $\mathrm{S}_{2} \%$. Show that:

$$
\frac{d_{1}+t}{d_{2}+t}\left(1-\frac{s}{100}\right)
$$

Velocity Ratio =

Where: $\quad t$ is the diameter of the belt
d_{1} is the diameter of the driver
d_{2} is the diameter of the follower
(6 marks)
(c) Two pulleys one 450 mm diameter and the other 200 mm diameter on parallel shafts 1.95 m apart are connected by an open belt. Find the length of the belt required and the angle of contact between the belt and each pulley. What power can be transmitted by the belt when the larger pulley rotates at 200Rpm if the maximum permissible tension in the belt is 1 KN , and the coefficient of friction between the belt and pulley is 0.45 ?
(10 marks)

Question FOUR

A synthetic belt of 0.01 m thickness and 0.25 m breadth is used to run a steel pulley 1 m in diameter at a speed of 5 revolutions per second. If the active arc on the smaller pulley is 110° and stress on the tight side is 2 mpa , find the power capacity of the belt the density of the belt may be taken as $980 \mathrm{~kg} / \mathrm{m}^{3}$ and the coefficient of friction of the belt (snynthetic) on steel is 0.35 .
marks)

Question FIVE

(a) Explain the terms gauge pressure and absolute pressure.
(b) Describe with sketches TWO methods of measuring atmospheric pressure.
(c) With the aid of a diagram show that the intensity of pressure at a point in a fluid at rest is the same in all direction.
(d) A tube manometer, Figure 5, measures the pressure difference between two points A and B in a liquid of specific weight W_{2}. Calculate the difference in pressure if $\mathrm{a}=1.5 \mathrm{~m}$, $\mathrm{b}=0.75 \mathrm{~m}$ and $\mathrm{L}=0.5 \mathrm{~m}$. If the liquid at A and B is water $\left[\mathrm{W}_{1}=9.81 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3}\right]$ and the specific gravity of mercury is 13.6 (so that $\mathrm{W}_{2}=13.6 \mathrm{~W}$].

Fig. 5

