

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology
 DEPARTMENT OF MEDICAL ENGINEERING

DIPLOMA IN MEDICAL ENGINEERING (DME)

EME 2152
MECHANICAL ENGINEERING SCIENCE

SPECIAL/SUPPLEMENTARY EXAMINATIONS SERIES: OCTOBER, 2014
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

-Question ONE is COMPULSORY questions
-Attempt any other TWO questions
This paper consists of $\mathbf{3}$ PRINTED pages

QUESTION ONE (COMPULSORY)

(a) A missile is projected vertically upwards with an initial velocity of $80 \mathrm{~m} / \mathrm{s}$. Determine the time for it to reach a height of 200 m with no resistance experienced.
(2 marks)
(b) (i) Four forces act at a point as follows; 1 kN due $\mathrm{E} ; 4 \mathrm{kN}$ at $45^{\circ} \mathrm{N}$ of E; 3 kN due $\mathrm{N} ; 5 \mathrm{kN} 50^{\circ} \mathrm{S}$ of W. Determine the magnitude and direction of the rsultantl force.
(ii) An aircraft increases its speed from $160 \mathrm{~km} / \mathrm{h}$ to $960 \mathrm{~km} / \mathrm{h}$ in one minute. If the acceleration is constant determine its value and the distance travelled in this time.
(12 marks)
(c) (i) A load of 20 tonnes is pulled along a horizontal track by a force at 47° to and above, the track. If the coefficient of sliding friction is 0.6 . Determine the friction force.
(ii) A body moves in a circular path of radius 10 m . In an interval of 0.5 s the radius from the centre of the circle to the bode sweeps out an angle of 18°. Determine the average angular velocity and the average linear speed of the body.
(16 marks)

QUESTION TWO

(a) A block of metal having a mass of 65 kg requires a horizontal force of 155 N to drag it at a constant speed along a horizontal floor.

Determine:
(i) The coefficient of friction
(ii) The angle of friction
(8 marks)
(b) A lifting machine has a velocity rates of 4 can lift a load 185 kg when the effort applied is 460 N .

Determine:
(i) The efficiency
(ii) The effort required to overcome friction at this load.
(iii) The work done against friction when the load is lifted 4 m .
(12 marks)

QUESTION THREE

(a) A force of 60 N acts horizontally. Resolve this force into two components one of which acts at an angle of 40° above the horizontal and the other at 20° below the horizontal. Determine the value of each component.
(8 marks)
(b) It requires a horizontal forces of 375 N to drag a truck of mass 300 kg at uniform speed along a level truck. Determine the force required to move the truck if the force is inclined at 40° to the horizontal and is:
(i) A push into the truck
(ii) A pull away from the truck
(12 marks)

QUESTION FOUR

(a) A motor vehicle hauls a trailer at $75 \mathrm{~km} / \mathrm{h}$ when exerting a steady pull of 800 N . Determine
(i) The work done in 20 min .
(ii) The power required.

A vertical load is 100 N is supported by Two chains, A and B in the same vertical plane. The force in A is 50 N and acts in a line at 30° to the horizontal plane at 120° to the 100 N load. Determine the force in chain B and the angle between A and B

QUESTION FIVE

(a) A train of total mass 100 tonnes is traveling at $90 \mathrm{~km} / \mathrm{h}$ on level track. The rolling resistance to motion is 10000 N. Determine:
(a) Resisting force required to stop the train in one minute
(ii) The braking effort required.
(8 marks)
(b) A force P acts on a body at an angle θ to a horizontal line 0 x . P, together with a pull of 1.5 kN at 30° to and below, 0 x , has the same effort of a force of 5 kN at 45° to, and above Ox. Determine the magnitude of P and the angle θ
(12 marks)

