

TECHNICAL UNIVERSITY OF MOMBASA

Faculty of Engineering and Technology

DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

DIPLOMA IN MECHANICAL ENGINEERING (PLANT OPTION)(DPL)

EEP 2331 PLANT ELECTRICAL IV

END OF SEMESTER EXAMINATIONS SERIES: DECEMBER, 2013 TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- You should have the following for this examination:
 Answer Booklet
- 2. This paper consists of **FIVE** Questions.
- 3. Answer **ANY THREE** Questions the marks are as shown.
- 4. This paper consists of FOUR *printed* pages.

Question ONE

(a)	(i)	Define a transformer.	(2 marks)
	(ii)	State TWO advantages of star-delta transformer connection.	(2 marks)
(b)	(i)	Show from first principles that turns-ratio of a transformer is given by: $\frac{E_2}{E_1} = \frac{N_2}{N_1} = K$	
			(6 marks)
	(jij)	A single phase 80KWA 2000/200W 50Hz transformer has an impedance	drop of 8%

- (ii) A single phase, 80KVA, 2000/200V, 50Hz transformer has an impedance drop of 8% and a resistance drop of 4%.
 - (I) Calculate its full-load regulation at 0.8 power factor lagging.
 - (II) At what power factor is the regulation zero.

(10 marks)

Question TWO

(a)	(i)	Differentiate between high voltage and low voltage windings of a transformer.		
			(2 marks)	
	(ii)	Briefly explain the working principle of a transformer.	(4 marks)	
(b)	(i)	State TWO causes of heat in a transformer core.	(2 marks)	
			· · · · · ·	
	(ii)	State TWO functions of transformer oil.	(2 marks)	
	(iii)	Explain THREE tests carried on a transformer oil to ensure its e	ffectiveness.	

(3 marks)

- (c) A 3300/300V single phase transformer gives 0.6A and 60W as ammeter and wattmeter readings when supply is given to low voltage winding and high voltage winding is kept open. Calculate:
 - (i) Power factor of no-load current
 - (ii) magnetizing component of current
 - (iii) Iron-loss component of current

(7 marks)

Question THREE

(a)	(i)	State FOUR characteristics of an ideal transformer.	(2 marks)
	(ii)	Briefly explain THREE transformer losses.	(3 marks)
(b)	(i)	Explain the following cooling methods as used in power transformers:	
	(ii)	 (I) ONAN/ONAF/ONAF (II) ONAF/ODAF A 100KVA, 2200/400V, single phase transformer has iron loss of 850W 	(2 marks) on no load.
		From a short circuit test, the effective resistance in the secondary was 0.0144Ω . Calculate the efficiency of the transformer when it is delivering	found to be
		(I) Half-load unity p.f(II) Full-load at 0.8p.f. lagging	<i>/_</i>
			(5 marks)
(c)	(i)	Explain why transformers are rated in KVA.	(3 marks)
	(ii)	A single-phase step-down transformer has a turn-ratio of 3. The rest reactance of the primary windings are 1.2Ω and 6Ω and those of the winding are 0.05Ω and 0.03Ω respectively. If the h.v winding is suppli- 50Hz, with l.v. winding short-circuited, calculate:	istance and e secondary ed at 230V,
		(a) Current in the l.v. winding	
		(b) Power factor	(5 marks)
Quest	ion FO	UR	
(a)	(i)	Briefly explain the following terms with reference to motor rating:	
		(a) Continuous rating(b) Intermittent duty	
	(ii)	State and explain TWO types of motor enclosures.	(2 marks) (2 marks)

(iii) Calculate the theoretical continuous rating of a motor which has a duty cycle of 20kW for two minutes, 5KW for two minutes, 10KW for three minutes and stopped for three minutes.
 (4 marks)

- (b) Explain the following in case of single phase induction motors:
 - (i) The forward flux is several times greater than the backward flux wave at normal rotor speed but are equal at stand still position.
 - (ii) The direction of rotation is always from auxiliary winding to main winding whether a resistance or capacitance is connected in series with auxiliary winding.

(6 marks)

(c) The resistance and inductive reactance of each winding of a 50Hz split-phase induction motor are 75Ω and 230Ω respectively. Additional resistance R and condenser C are in series with one winding. Calculate their values to give the some current in each winding with a phase difference of 90°. (6 marks)

Question FIVE

(a)	(i)	Explain why single phase induction motors are not self-starting.	(3 marks)	
	(ii)	Briefly explain why single phase series motors are preferred for fraction se rather than induction or synchronous motors.	rvices (2 marks)	
	(iii)	State why reluctance motor has low efficiency.	(2 marks)	
(b)	(i)	State THREE effects of adding a running capacitor to capacitor-start induc motors.	r-start induction (3 marks)	
	(ii)	State the reasons why the motor resistance of a single-phase motor is low.	(3 marks)	
(c)	(i)	State TWO advantages of stepper motors.	(2 marks)	
	(ii)	The name plate of a single phase, 4 pole induction motor gives the followin Output = 410W, Supply voltage = 230V, Frequency = 50Hz, Input current = Power factor = 0.7 and Speed = 1410 rpm. Calculate:	ng data: = 3.2A,	
		(I) Efficiency of the motor(II) Slip of the motor when delivering the rated output	(5 marks)	