

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A CONSTITUENT COLLEGE OF JKUAT)

Faculty of Engineering and Technology

UKUNDA CAMPUS

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING Certificate in Electric and Electronics Engineering

ENGINEERING SCIENCE

END OF SEMESTER EXAMINATION

SERIES: NOVEMBER, 2011

TIME: 2 HOURS

Instructions

- 1. You should have the following for this examination:
 - Answer Booklet
 - Scientific Calculator
- 2. This paper consists of **FIVE (5)** Questions.
- 3. Answer Question **ONE** (Compulsory) and any other **TWO** Questions.
- 4. This paper consists of *FOUR Printed pages*.
- © 2011 The Mombasa Polytechnic University College

Question ONE

- (a) Differentiate between vector and scalar quantities and give TWO examples of each. (4 Marks)
- (b) (i) State Kirchoff's Law. (2 Marks)
 - (ii) Write down the current relationship for the junctions a, b, and c of the network shown below and hence calculate the currents I₂, I₄ and I₅. (5 Marks)

(c)	Outlin	e the characteristics of lines of magnetic flux.	(4 Marks)			
(d)	Briefly	v explain THREE applications of electrolysis.	(5 Marks)			
(e)	(i)	Name THREE factors affecting resistance.	(3 Marks)			
	(ii)	A coil consist of 2000 turns of copper wire having a cross-sectional area of 0.8mm ² . The mean length per turn in 80cm and resistivity of copper is 0.02mnm at normal working temperature. Calculate the resistance of the coil.	(3 Marks)			
(f)	A capa Calcul	acitor having a capacitance of 80μ F is connected across a 500V d.c. supply. ate the charge.	(2 Marks)			
(g)	A heat consur	er takes a current of 8A from a 230V source for 12h. Calculate the energy ned in kilowatt-hours.	(2 Marks)			
Question TWO						

(a) State ohms law. (2 Marks)

(b) (i) A current of 8A is shared between two resistors in the network shown below. Calculate the current in the 2Ω resistor, given that:

(I)

$$R_2 = 2\Omega$$

 $R_1 = 4\Omega$
(II)

(4 Marks)

(ii) For the network shown below, calculate the effective resistance and hence the supply current. (6 Marks)

- (c) A 230V lamp is rated to pass a current of 0.2A. Calculate its power output. If a second similar lamp is connected in parallel to the lamp, determine the supply current required to give the same power output in each lamp. (4 Marks)
- (d) Assuming the lamps in C above have a reasonable constant resistance regardless of operating conditions, estimate the power output if the lamps are connected in series.
 (4 Marks)

Question THREE

(a)	State the TWO types of magnets.	(2 Marks)
(b)	Give the THREE types of magnetic materials and an example of each.	(6 Marks)
(c)	Outline THREE applications of electromagnets.	(3 Marks)

(d)	A coil of 200 turns is wound uniformly over a wooden ring having a mean circumference of 600mm and a uniform cross-sectional area of 500mm ² . If the current through the coil is 4.0A. Calculate:				
	 (i) The magnetic field strength (ii) The flux density (iii) The total flux 				
		(9 Marks)			
Question FOUR					
(a)	What are the factors affecting resistivity of a material.	(3 Marks)			
(b)	Calculate the resistance of 100m length of wire having a uniform cross-sectional				
	area of 0.1 mm ² . if the wire is made of manganese having a resistivity of 50 x 10^{-8}	Ωm.			
		(4 Marks)			
(c)	Give THREE types of resistors.	(3 Marks)			
(e)	With an aid of a well labelled diagram explain the Domain theory of magnetism.	(7 Marks)			
(f)	Give SIX examples of non-magnetic materials.	(3 Marks)			
Quest	ion FIVE				
(a)	Differentiate between a primary cell and a secondary cell.	(4 Marks)			
(b)	State THREE factors that determine the amount of element liberated during the process of electrolysis.	(3 Marks)			
(c)	Define the following terms:				
	(i) Polarization(ii) Local action	(2 Marks) (2 Marks)			
(d)	With an aid of a well labelled diagram explain how the lenclanche cell works.	(5 Marks)			
(f)	Give TWO advantages and TWO disadvantage of a secondary cell.	(4 Marks)			