THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE
FACULTY OF ENGINEERING
DEPARTMENT OF MECHANICAL AND AUTOMOTIVE ENGINEERING

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING EMG 2203 ENGINEERING MECHANICS YEAR II SEMESTER I EXAMS
 SERIES APRIL 2010
 TIME 3 HRS

INSTRUCTION TO CANDIDATES

You should have the following for this examination
> Drawing instruments
> Scientific Calculator
This paper consists of FIVE questions , ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

Maximum marks for each part of a question are as shown.
EMG 2203 Engineering mechanics Paper № 1

Q 1
a) Describe the following idealizations used in engineering mechanics:
i. Particle
ii. Rigid body
iii. Concentrated force
(6 marks)
b) Using Newton's law of gravitational attraction, explain how the weight of a body located on the surface of the earth is determined.
(6 marks)
c) Represent each of the following combinations of units in the correct S.I. form using an appropriate prefix:
i. m / ms
ii. $\quad \mu \mathrm{km}$
iii. $\mathrm{ks} / \mathrm{mg}$
iv. $\mathrm{km} \cdot \mu \mathrm{N}$

Q 2
a) State the differences between vectors and scalars.
(2 marks)
b) Using the cosine and sine laws describe how to the forces $\mathrm{F}_{1}, \mathrm{~F} 2, \mathrm{~F} 3$ and angles γ, β, α in figure 1 are interconnected.
c) Use figure 2 to answer the following questions:
i. Determine the design angle $\theta\left(0^{\circ} \leq \theta \geq 90^{\circ}\right)$ for strut AB so that the 400 N horizontal force has a component of 500 N directed from A towards C. Find the component of the force acting along AB. Take $\varphi=40^{\circ}$.
(8 marks)
ii. Determine the design angle $\varphi\left(0^{\circ} \leq \theta \geq 90^{\circ}\right)$ between struts AB and AC so that the 400 N horizontal force has a component of 600 N which acts up to the left, in the same direction as from B towards A. Take $\theta=30^{\circ}$
(6 marks)

Q 3
a) Use figure 3 to answer the following questions:
i. A log is being towed by two tractors A and B as shown in the figure. Determine the magnitude of the two towing forces FA_{A} and FB , if it is required that the resultant force have a magnitude $\mathrm{Fr}=10 \mathrm{kN}$ and be directed along the x axis. Take $\theta=15^{\circ}$.
ii. If the resultant of the two forces acting on the \log is to be directed along the positive x axis and have a magnitude of 10 kN , determine the angle θ of the cable attached to B such that the force Fb in this cable is minimum and the force in each cable for this situation.
b) The three concurrent forces acting on the post in figure 4 produce a resultant force $\mathrm{FR}_{\mathrm{R}}=0$. If $\mathrm{F}_{2}=0.5 \mathrm{~F}_{1}$ and F_{1} is to be 90° from F 2 , determine the required magnitude F 3 expressed in terms of F_{1} and the angle θ.
(10 marks)
Q 4
a) Use figure 5 to answer the following questions:
i. The mast in figure is subjected to three forces F1 and F2 and F3 as shown. Determine the coordinate direction angles $\gamma_{1}, \beta_{1}, \alpha_{1}$ of F_{1} so that the resultant force acting on the mast is zero.
(5 marks)
ii. Determine the coordinate direction angles $\gamma_{1}, \beta_{1}, \alpha_{1}$ of F_{1} so that the resultant force acting on the mast is $\mathrm{FR}=\{350 i\} \mathrm{N}$
b) The two forces F_{1} and F 2 acting at A in figure 6 have a resultant force of $\mathrm{FR}=\{-100 \mathrm{k}\} \mathrm{N}$. determine the magnitude and coordinate direction angles of F 2

Q 5
a) The pole in figure 7 is subjected to a force F which has components $\mathrm{Fx}_{\mathrm{x}}=1.5 \mathrm{kN}$ and $\mathrm{F}_{\mathrm{z}}=1.25$ kN . If $\beta=75^{\circ} \mathrm{n}$ determine the magnitude of F and Fy .
b) Express force F in figure 8 as a Cartesian vector and determine its coordinate direction angles.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

