THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of Jkuat)
Faculty of Engineering and Technology
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

DIPLOMA IN TECHNOLOGY
ELECTRICAL POWER ENGINEERING
MECHATRONICS
TELECOMMUNICATION \& INFORMATION ENG.
ENGINEERING MATHEMATICS VI

SEMESTER VI FINAL EXAMINATIONS
SERIES: AUGUST/SEPTEMBER 2011

TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Question paper
- Answer booklet
- A Non-programmable calculator
- SMP Table
- Abridged Laplace Transforms table

Answer question ONE (COMPULSORY) and any other TWO questions
Find an attached copy of Abridged Laplace Transform Table
This paper consists of THREE printed pages

Question 1 (Compulsory)

$$
\left(\begin{array}{ll}
3 & 1 \\
4 & 3
\end{array}\right) \quad f(\lambda)=\operatorname{det}(A-\lambda I)
$$

a) Given and the characteristic polynomial , solve the characteristic

$$
f(\lambda)=0 \quad f(A)=0
$$

equation and hence show that where $0=$ Zero matrix. (7 marks)
b) Determine the eigenvalues of the following matrix.

$$
A=\left(\begin{array}{ccc}
-2 & 5 & 4 \\
5 & 7 & 5 \\
4 & 5 & -2
\end{array}\right)
$$

c) (i) Determine the Laplace transform of

$$
f(t)= \begin{cases}t-1, & 1<t<2 \\ 3-t, & 2<t<3\end{cases}
$$

(ii) Given the function
i) Express the function in terms of unit step (Heaviside) function
ii) Determine its Laplace transform

$$
e^{x}(\cos y+j \sin y)
$$

d) (i) Show that the function is analytic function.
(ii) Determine the derivative of the function in d (i)

Question 2

a) Given the matrix

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

Determine
i) Eigen value of A
ii) Eigenvectors of A

$$
P^{-1} A P=S
$$

iii) Diagonalize the matrix A such that where S is a diagonal matrix (14 marks)

$$
C=\left(\begin{array}{ll}
1 & 3 \\
2 & 2
\end{array}\right)
$$

b) Determine the eigenvectors of the matrix given Question 3

$$
x^{2}-y^{2}+2 y
$$

a) Given the function
i) Show that the given function is harmonic
ii) Show that the function remains harmonic under the transformation

$$
U-V=(x-y)\left(x^{2}+4 x y+y^{2}\right) \quad f(z)=u+j v \quad z=x+j y
$$

b) Given and is an analytic function of $f(z)$
determine in terms of z

Question 4

$$
\frac{1-\cos t}{t}
$$

a) Determine the Laplace transform of
b) Given the function

$$
f(t)=\left\{\begin{array}{cc}
\sin 2 t, & 2 \pi<t<4 \pi \\
0, & \text { otherwise }
\end{array}\right.
$$

$$
f(t)
$$

i) Represent in terms of unit function
ii) Hence, determine its Laplace transform

$$
f(t)=\left\{\begin{array}{cc}
\sin w t \quad \text { for } \quad 0<t<\pi / w \\
0 & \text { for } \pi / w<t<2 \pi / w
\end{array}\right.
$$

c) The Half wave rectifier function is given by

$$
f(t)
$$

determine the Laplace transform of

Question 5

$$
w=\frac{1}{z}, \quad x^{2}-y^{2}=1
$$

a) Show that under the transformation
the image of the hyperbola is the

$$
R^{2}=\cos 2 \phi
$$

lemniscate
(6 marks)
b) The vertices of a triangle in the z - plane is given by $i, 1+i$ and $1-i$

$$
w=e^{5 \pi i / 3} \cdot z-2+4 i
$$

i) Determine its image under the transformation
ii) On a graph paper plot the triangle on the z-plane and its image on the w-plane.
(5 marks)
$x^{2}-y^{2}=4 \quad w=z^{2}$
c) Transform the curve under the mapping (3 marks)

