

THE MOMBASA POLYTECHNIC UNIVERSITY COLLEGE

(A Constituent College of JKUAT) Faculty of Engineering and Technology

DEPARTMENT OF BUILDING AND CIVIL ENGINEERING

DIPLOMA IN CIVIL ENGINEERING

DIPLOMA IN BUILDING & CIVIL ENGINEERING

EBC 2321: HYDROLOGY

SPECIAL/SUPPLEMENTARY EXAMINATION SERIES: OCTOBER 2012 TIME: 2 HOURS

Instructions to Candidates:

You should have the following for this examination

- Answer Booklet
- Electronic calculator

This paper consists of **FIVE** questions. Answer any **THREE** questions Maximum marks for each part of a question are clearly shown This paper consists of **THREE** printed pages **Question 1 (30 marks)**

- a) Define the following forms of precipitation
 - (i) Drizzle
 - (ii) Rain
 - (iii) Hail
 - (iv) Sleet
 - (v) Fog
 - (vi) Glaze
 - (vii) Smog
 - (viii) Dew

		(
b)	With the aid of a sketch, briefly describe the hydrological cycle	(8 marks)

c) State FOUR factors that affect precipitation at a specific location (4 marks)

Question 2 (20 marks)

a) With the aid of a sketch, briefly describe the principle of the tipping bucket rain gauge

(8 marks)

(18 marks)

b) The rainfall data in table 1 were obtained for a catchment using the thiessen polygon method. Estimate the average depth of rainfall in the catchment (8 marks)

	Station	Α	В	С	D	E	F	G	Н		
	Polygon are (ha)	18	31	282	311	52	238	212	197		
	Observed rainfall (mn	n) 16.5	37.	48.8	68.3	39.1	75.7	127.0	114.3		
			1								
				Table 1	l						
c)	c) Define the following terms:										
	(i) Probable maximum precipitation(ii) Recurrence interval of a storm										
0											
Qu	lestion 3 (20 marks)										
a)) Make a labeled sketch of a USWR class A pap showing all soliont dimensions										
u)	Wake a labeled sketch	01 0 0 0 0 1	J C 1 u 55	r puir s	nowing	an sanch	t differis	10115	(U mark)		
b)	Define the following t	erms									
,	(i) Infiltration capacity										
	(ii) Ephemeral stream										
	(iii) Intermitten	t stream							(8 marks		
c)	The details of a catchr	nent are as :	follow	S:							
	(i) Area of catchment 7.0km^2										
	(ii) Total numb	ber of stream	ns 40	051							
	(iii) I otal lengt	n of all strea	$\frac{1}{1}$.85 km							
Da	(IV) Length of f	nain stream	okm	a aatab	mont				(6 manly		
De	(i) Drainage densi				ment				(o mark		
	(i) Dramage utils	,									

(iii) Form factor

Question 4 (20 marks)

a) The data in table 2 was obtained during a stream flow measurement exercise

Distance from temporary Bm at		1.5	3.3	5.1	7.1	9.3
bank of stream (cm)	5					
Depth of vertical (m)	0	0.6	1.2	0.8	0.6	0
Mean velocity in vertical (m)	0	0.72	1.31	0.83	0.68	0

Table 2

Using the mean section method, calculate stream flow

- **b**) With the aid of a sketch, briefly explain the method of measuring surface velocity of an open channel using a surface float (4 marks)
- c) With the aid of a sketch, outline the use of a rating curve for a river gauging station (4 marks)

Question 5 (20 marks)

- a) Define the following terms:
 - Hydrograph (i)
 - (ii) Flood
- b) A well 0.5m diameter penetrates fully into an aquifer of 20m thickness and a hydraulic conductivity of 8.2 x 10^{-4} m/s. The radius of influence is not to exceed 260m. If the drawn down in the well is not to exceed 3m, determine the expected maximum yield. (6 marks)
- c) The values of annual precipitation at rain gauge stations, expressed in cm per year in chronological order from 1986 to 1997 are shown in table 3. Using Weibull formula (T = (N+1)/M). Estimate the maximum value of precipitation which has a recurrence interval of

(5 years)

Yr	1986	198	1988	1989	1990	199	1992	1993	199	1995	1996	1997
		7				1			4			
Precipitation	36.5	29.0	56.2	82.0	27.8	23.4	71.2	48.3	31.4	18.1	29.0	65.1
(cm)												

(12 marks)

(4 marks)